

Cisco IOS NetFlow Configuration Guide

Release 12.4

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA

http://www.cisco.com Tel: 408 526-4000

800 553-NETS (6387)

Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0807R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Cisco IOS NetFlow Configuration Guide © 2008 Cisco Systems, Inc. All rights reserved.

About Cisco IOS and Cisco IOS XE Software Documentation

Last updated: August 6, 2008

This document describes the objectives, audience, conventions, and organization used in Cisco IOS and Cisco IOS XE software documentation, collectively referred to in this document as Cisco IOS documentation. Also included are resources for obtaining technical assistance, additional documentation, and other information from Cisco. This document is organized into the following sections:

- Documentation Objectives, page i
- Audience, page i
- Documentation Conventions, page ii
- Documentation Organization, page iii
- Additional Resources and Documentation Feedback, page xi

Documentation Objectives

Cisco IOS documentation describes the tasks and commands available to configure and maintain Cisco networking devices.

Audience

The Cisco IOS documentation set is i ntended for users who configure and maintain Cisco networking devices (such as routers and switches) but who may not be familiar with the configuration and maintenance tasks, the relationship among tasks, or the Cisco IOS commands necessary to perform particular tasks. The Cisco IOS documentation set is also intended for those users experienced with Cisco IOS who need to know about new features, new configuration options, and new software characteristics in the current Cisco IOS release.

Documentation Conventions

In Cisco IOS documentation, the term *router* may be used to refer to various Cisco products; for example, routers, access servers, and switches. These and other networking devices that support Cisco IOS software are shown interchangeably in examples and are used only for illustrative purposes. An example that shows one product does not necessarily mean that other products are not supported.

This section includes the following topics:

- Typographic Conventions, page ii
- Command Syntax Conventions, page ii
- Software Conventions, page iii
- Reader Alert Conventions, page iii

Typographic Conventions

Cisco IOS documentation uses the following typographic conventions:

Convention	Description
^ or Ctrl	Both the ^ symbol and Ctrl represent the Control (Ctrl) key on a keyboard. For example, the key combination ^D or Ctrl-D means that you hold down the Control key while you press the D key. (Keys are indicated in capital letters but are not case sensitive.)
string	A string is a nonquoted set of characters shown in italics. For example, when setting a Simple Network Management Protocol (SNMP) community string to <i>public</i> , do not use quotation marks around the string; otherwise, the string will include the quotation marks.

Command Syntax Conventions

Cisco IOS documentation uses the following command syntax conventions:

Convention	Bold text indicates commands and keywords that you enter as shown.		
bold			
italic	Italic text indicates arguments for which you supply values.		
[x]	Square brackets enclose an optional keyword or argument.		
I	A vertical line, called a pipe, indicates a choice within a set of keywords or arguments.		
[x y]	Square brackets enclosing keywords or arguments separated by a pipe indicate an optional choice.		
{x y}	Braces enclosing keywords or arguments separated by a pipe indicate a required choice.		
$[x \{y \mid z\}]$	Braces and a pipe within square brackets indicate a required choice within an optional element.		

Software Conventions

Cisco IOS uses the following program code conventions:

Convention	Description			
Courier font	Courier font is used for information that is displayed on a PC or terminal screen			
Bold Courier font	Bold Courier font indicates text that the user must enter.			
< >	Angle brackets enclose text that is not displayed, such as a password. Angle brackets also are used in contexts in which the italic font style is not supported; for example, ASCII text.			
!	An exclamation point at the beginning of a line indicates that the text that follows is a comment, not a line of code. An exclamation point is also displayed by Cisco IOS software for certain processes.			
[]	Square brackets enclose default responses to system prompts.			

Reader Alert Conventions

The Cisco IOS documentation set uses the following conventions for reader alerts:

Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.

Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.

Means the described action saves time. You can save time by performing the action described in the paragraph.

Documentation Organization

This section describes the Cisco IOS documentation set, how it is organized, and how to access it on Cisco.com. Included are lists of configuration guides, command references, and supplementary references and resources that make up the documentation set. The following topics are included:

- Cisco IOS Documentation Set, page iv
- Cisco IOS Documentation on Cisco.com, page iv
- Configuration Guides, Command References, and Supplementary Resources, page v

Cisco IOS Documentation Set

Cisco IOS documentation consists of the following:

- Release notes and caveats provide information about platform, technology, and feature support for a release and describe severity 1 (catastrophic), severity 2 (severe), and severity 3 (moderate) defects in released Cisco IOS code. Review release notes before other documents to learn whether or not updates have been made to a feature.
- Sets of configuration guides and command references organized by technology and published for each standard Cisco IOS release.
 - Configuration guides—Compilations of documents that provide informational and task-oriented descriptions of Cisco IOS features.
 - Command references—Compilations of command pages that provide detailed information about the commands used in the Cisco IOS features and processes that make up the related configuration guides. For each technology, there is a single command reference that covers all Cisco IOS releases and that is updated at each standard release.
- Lists of all the commands in a specific release and all commands that are new, modified, removed, or replaced in the release.
- Command reference book for debug commands. Command pages are listed in alphabetical order.
- Reference book for system messages for all Cisco IOS releases.

Cisco IOS Documentation on Cisco.com

The following sections describe the documentation organization and how to access various document types.

Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

New Features List

The New Features List for each release provides a list of all features in the release with hyperlinks to the feature guides in which they are documented.

Feature Guides

Cisco IOS features are documented in feature guides. Feature guides describe one feature or a group of related features that are supported on many different software releases and platforms. Your Cisco IOS software release or platform may not support all the features documented in a feature guide. See the Feature Information table at the end of the feature guide for information about which features in that guide are supported in your software release.

Configuration Guides

Configuration guides are provided by technology and release and comprise a set of individual feature guides relevant to the release and technology.

Command References

Command reference books describe Cisco IOS commands that are supported in many different software releases and on many different platforms. The books are provided by technology. For information about all Cisco IOS commands, use the Command Lookup Tool at http://tools.cisco.com/Support/CLILookup or the *Cisco IOS Master Command List, All Releases*, at http://www.cisco.com/en/US/docs/ios/mcl/all_release/all_mcl.html.

Cisco IOS Supplementary Documents and Resources

Supplementary documents and resources are listed in Table 2 on page xi.

Configuration Guides, Command References, and Supplementary Resources

Table 1 lists, in alphabetical order, Cisco IOS and Cisco IOS XE software configuration guides and command references, including brief descriptions of the contents of the documents. The Cisco IOS command references are comprehensive, meaning that they include commands for both Cisco IOS software and Cisco IOS XE software, for all releases. The configuration guides and command references support many different software releases and platforms. Your Cisco IOS software release or platform may not support all these technologies.

For additional information about configuring and operating specific networking devices, go to the Product Support area of Cisco.com at http://www.cisco.com/web/psa/products/index.html.

Table 2 lists documents and resources that supplement the Cisco IOS software configuration guides and command references. These supplementary resources include release notes and caveats; master command lists; new, modified, removed, and replaced command lists; system messages; and the debug command reference.

Table 1 Cisco IOS and Cisco IOS XE Configuration Guides and Command References

Configuration Guide and Command Reference Titles	Features/Protocols/Technologies
Cisco IOS AppleTalk Configuration Guide	AppleTalk protocol.
Cisco IOS XE AppleTalk Configuration Guide	
Cisco IOS AppleTalk Command Reference	
Cisco IOS Asynchronous Transfer Mode Configuration Guide	LAN ATM, multiprotocol over ATM (MPoA), and WAN ATM.
Cisco IOS Asynchronous Transfer Mode Command Reference	

Table 1 Cisco IOS and Cisco IOS XE Configuration Guides and Command References (continued)

Configuration Guide and Command Reference Titles	Features/Protocols/Technologies
Cisco IOS Bridging and IBM Networking Configuration Guide Cisco IOS Bridging Command Reference	• Transparent and source-route transparent (SRT) bridging, source-route bridging (SRB), Token Ring Inter-Switch Link (TRISL), and token ring route switch module (TRRSM).
Cisco IOS IBM Networking Command Reference	Data-link switching plus (DLSw+), serial tunnel (STUN), block serial tunnel (BSTUN); logical link control, type 2 (LLC2), synchronous data link control (SDLC); IBM Network Media Translation, including Synchronous Data Logical Link Control (SDLLC) and qualified LLC (QLLC); downstream physical unit (DSPU), Systems Network Architecture (SNA) service point, SNA frame relay access, advanced peer-to-peer networking (APPN), native client interface architecture (NCIA) client/server topologies, and IBM Channel Attach.
Cisco IOS Broadband and DSL Configuration Guide	Point-to-Point Protocol (PPP) over ATM (PPPoA) and PPP over
Cisco IOS XE Broadband and DSL Configuration Guide	Ethernet (PPPoE).
Cisco IOS Broadband and DSL Command Reference	
Cisco IOS Carrier Ethernet Configuration Guide	Connectivity fault management (CFM), Ethernet Local
Cisco IOS Carrier Ethernet Command Reference	Management Interface (ELMI), IEEE 802.3ad link bundling, Link Layer Discovery Protocol (LLDP), media endpoint discovery (MED), and operations, administration, and maintenance (OAM).
Cisco IOS Configuration Fundamentals Configuration Guide	Autoinstall, Setup, Cisco IOS command-line interface (CLI), Cisco IOS file system (IFS), Cisco IOS web browser user
Cisco IOS XE Configuration Fundamentals Configuration Guide	interface (UI), basic file transfer services, and file management.
Cisco IOS Configuration Fundamentals Command Reference	
Cisco IOS DECnet Configuration Guide	DECnet protocol.
Cisco IOS XE DECnet Configuration Guide	
Cisco IOS DECnet Command Reference	
Cisco IOS Dial Technologies Configuration Guide	Asynchronous communications, dial backup, dialer technology,
Cisco IOS XE Dial Technologies Configuration Guide	dial-in terminal services and AppleTalk remote access (ARA), large scale dialout, dial-on-demand routing, dialout, modem and
Cisco IOS Dial Technologies Command Reference	resource pooling, ISDN, multilink PPP (MLP), PPP, virtual private dialup network (VPDN).
Cisco IOS Flexible NetFlow Configuration Guide	Flexible NetFlow.
Cisco IOS Flexible NetFlow Command Reference	

Table 1 Cisco IOS and Cisco IOS XE Configuration Guides and Command References (continued)

Configuration Guide and Command Reference Titles	Features/Protocols/Technologies		
Cisco IOS H.323 Configuration Guide	Gatekeeper enhancements for managed voice services, Gatekeeper Transaction Message Protocol, gateway codec order preservation and shutdown control, H.323 dual tone multifrequency relay, H.323 version 2 enhancements, Network Address Translation (NAT) support of H.323 v2 Registration, Admission, and Status (RAS) protocol, tokenless call authorization, and VoIP gateway trunk and carrier-based routing.		
Cisco IOS High Availability Configuration Guide	A variety of High Availability (HA) features and technologies		
Cisco IOS XE High Availability Configuration Guide	that are available for different network segments (from		
Cisco IOS High Availability Command Reference	enterprise access to service provider core) to facilitate creation of end-to-end highly available networks. Cisco IOS HA features and technologies can be categorized in three key areas: system-level resiliency, network-level resiliency, and embedded management for resiliency.		
Cisco IOS Integrated Session Border Controller Command Reference	A VoIP-enabled device that is deployed at the edge of networks. An SBC is a toolkit of functions, such as signaling interworking, network hiding, security, and quality of service (QoS).		
Cisco IOS Intelligent Service Gateway Configuration Guide	Subscriber identification, service and policy determination, session creation, session policy enforcement, session life-cycle		
Cisco IOS Intelligent Service Gateway Command Reference	management, accounting for access and service usage, session state monitoring.		
Cisco IOS Interface and Hardware Component Configuration Guide	LAN interfaces, logical interfaces, serial interfaces, virtual nterfaces, and interface configuration.		
Cisco IOS XE Interface and Hardware Component Configuration Guide			
Cisco IOS Interface and Hardware Component Command Reference			
Cisco IOS IP Addressing Services Configuration Guide	Address Resolution Protocol (ARP), Network Address		
Cisco IOS XE Addressing Services Configuration Guide	Translation (NAT), Domain Name System (DNS), Dynamic Host Configuration Protocol (DHCP), and Next Hop Address		
Cisco IOS IP Addressing Services Command Reference	Resolution Protocol (NHRP).		
Cisco IOS IP Application Services Configuration Guide	Enhanced Object Tracking (EOT), Gateway Load Balancing		
Cisco IOS XE IP Application Services Configuration Guide	Protocol (GLBP), Hot Standby Router Protocol (HSRP), IP Services, Server Load Balancing (SLB), Stream Control		
Cisco IOS IP Application Services Command Reference	Transmission Protocol (SCTP), TCP, Web Cache Communication Protocol (WCCP), User Datagram Protocol (UDP), and Virtual Router Redundancy Protocol (VRRP).		
Cisco IOS IP Mobility Configuration Guide	Mobile ad hoc networks (MANet) and Cisco mobile networks.		
Cisco IOS IP Mobility Command Reference			
Cisco IOS IP Multicast Configuration Guide	Protocol Independent Multicast (PIM) sparse mode (PIM-SM),		
Cisco IOS XE IP Multicast Configuration Guide	bidirectional PIM (bidir-PIM), Source Specific Multicast		
Cisco IOS IP Multicast Command Reference	(SSM), Multicast Source Discovery Protocol (MSDP), Internet Group Management Protocol (IGMP), and Multicast VPN (MVPN).		

Table 1 Cisco IOS and Cisco IOS XE Configuration Guides and Command References (continued)

Configuration Guide and Command Reference Titles	Features/Protocols/Technologies		
Cisco IOS IP Routing Protocols Configuration Guide Cisco IOS XE IP Routing Protocols Configuration Guide Cisco IOS IP Routing Protocols Command Reference	Border Gateway Protocol (BGP), multiprotocol BGP, multiprotocol BGP extensions for IP multicast, bidirectional forwarding detection (BFD), Enhanced Interior Gateway Routing Protocol (EIGRP), Interior Gateway Routing Protocol (IGRP), Intermediate System-to-Intermediate System (IS-IS), on-demand routing (ODR), Open Shortest Path First (OSPF), and Routing Information Protocol (RIP).		
Cisco IOS IP SLAs Configuration Guide	Cisco IOS IP Service Level Agreements (IP SLAs).		
Cisco IOS XE IP SLAs Configuration Guide			
Cisco IOS IP SLAs Command Reference			
Cisco IOS IP Switching Configuration Guide Cisco IOS XE IP Switching Configuration Guide Cisco IOS IP Switching Command Reference	Cisco Express Forwarding, fast switching, and Multicast Distributed Switching (MDS).		
Cisco IOS IPv6 Configuration Guide Cisco IOS XE IPv6 Configuration Guide	For IPv6 features, protocols, and technologies, go to the IPv6 "Start Here" document at the following URL:		
Cisco IOS IPv6 Command Reference	http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-roadmap.html		
Cisco IOS ISO CLNS Configuration Guide	ISO connectionless network service (CLNS).		
Cisco IOS XE ISO CLNS Configuration Guide			
Cisco IOS ISO CLNS Command Reference			
Cisco IOS LAN Switching Configuration Guide Cisco IOS XE LAN Switching Configuration Guide Cisco IOS LAN Switching Command Reference	VLANs, Inter-Switch Link (ISL) encapsulation, IEEE 802.10 encapsulation, IEEE 802.1Q encapsulation, and multilayer switching (MLS).		
Cisco IOS Mobile Wireless Gateway GPRS Support Node Configuration Guide Cisco IOS Mobile Wireless Gateway GPRS Support Node Command Reference	Cisco IOS Gateway GPRS Support Node (GGSN) in a 2.5-generation general packet radio service (GPRS) and 3-generation universal mobile telecommunication system (UMTS) network.		
Cisco IOS Mobile Wireless Home Agent Configuration Guide	Cisco Mobile Wireless Home Agent, an anchor point for mobile terminals for which mobile IP or proxy mobile IP services are		
Cisco IOS Mobile Wireless Home Agent Command Reference	provided.		
Cisco IOS Mobile Wireless Packet Data Serving Node Configuration Guide Cisco IOS Mobile Wireless Packet Data Serving Node Command Reference	Cisco Packet Data Serving Node (PDSN), a wireless gateway that is between the mobile infrastructure and standard IP networks and that enables packet data services in a code division multiple access (CDMA) environment.		
Command Reference Cisco IOS Mobile Wireless Radio Access Networking Configuration Guide	Cisco IOS radio access network products.		
Cisco IOS Mobile Wireless Radio Access Networking Command Reference			

Table 1 Cisco IOS and Cisco IOS XE Configuration Guides and Command References (continued)

Configuration Guide and Command Reference Titles	Features/Protocols/Technologies		
Cisco IOS Multiprotocol Label Switching Configuration Guide	MPLS Label Distribution Protocol (LDP), MPLS Layer 2 VPNs, MPLS Layer 3 VPNs, MPLS Traffic Engineering (TE), and MPLS Embedded Management (EM) and MIBs.		
Cisco IOS XE Multiprotocol Label Switching Configuration Guide			
Cisco IOS Multiprotocol Label Switching Command Reference			
Cisco IOS Multi-Topology Routing Configuration Guide	Unicast and multicast topology configurations, traffic		
Cisco IOS Multi-Topology Routing Command Reference	classification, routing protocol support, and network management support.		
Cisco IOS NetFlow Configuration Guide	Network traffic data analysis, aggregation caches, export features.		
Cisco IOS XE NetFlow Configuration Guide			
Cisco IOS NetFlow Command Reference			
Cisco IOS Network Management Configuration Guide	Basic system management; system monitoring and logging;		
Cisco IOS XE Network Management Configuration Guide	troubleshooting, logging, and fault management; Cisco Discovery Protocol; Cisco IOS Scripting with Tool		
Cisco IOS Network Management Command Reference	Control Language (Tcl); Cisco networking services (CNS); DistributedDirector; Embedded Event Manager (EEM); Embedded Resource Manager (ERM); Embedded Syslog Manager (ESM); HTTP; Remote Monitoring (RMON); SNMP; and VPN Device Manager Client for Cisco IOS Software (XSM Configuration).		
Cisco IOS Novell IPX Configuration Guide	Novell Internetwork Packet Exchange (IPX) protocol.		
Cisco IOS XE Novell IPX Configuration Guide			
Cisco IOS Novell IPX Command Reference			
Cisco IOS Optimized Edge Routing Configuration Guide	Optimized edge routing (OER) monitoring, policy		
Cisco IOS Optimized Edge Routing Command Reference	configuration, routing control, logging and reporting, and VPN IPsec/generic routing encapsulation (GRE) tunnel interface optimization.		
Cisco IOS Quality of Service Solutions Configuration Guide	Class-based weighted fair queuing (CBWFQ), custom queuing, distributed traffic shaping (DTS), generic traffic shaping (GTS),		
Cisco IOS XE Quality of Service Solutions Configuration Guide	IP- to-ATM class of service (CoS), low latency queuing (LLQ), modular QoS CLI (MQC), Network-Based Application Recognition (NBAR), priority queuing, Security Device		
Cisco IOS Quality of Service Solutions Command Reference	Manager (SDM), Multilink PPP (MLPPP) for QoS, header compression, AutoQoS, QoS features for voice, Resource Reservation Protocol (RSVP), weighted fair queuing (WFQ), and weighted random early detection (WRED).		
Cisco IOS Security Configuration Guide	Access control lists (ACLs), authentication, authorization, and		
Cisco IOS XE Security Configuration Guide	accounting (AAA), firewalls, IP security and encryption, neighbor router authentication, network access security, network data encryption with router authentication, public key infrastructure (PKI), RADIUS, TACACS+, terminal access security, and traffic filters.		
Cisco IOS Security Command Reference			

Table 1 Cisco IOS and Cisco IOS XE Configuration Guides and Command References (continued)

Configuration Guide and Command Reference Titles	Features/Protocols/Technologies		
Cisco IOS Service Selection Gateway Configuration Guide	Subscriber authentication, service access, and accounting.		
Cisco IOS Service Selection Gateway Command Reference			
Cisco IOS Software Activation Configuration Guide	An orchestrated collection of processes and components to activate Cisco IOS software feature sets by obtaining and validating Cisco software licenses.		
Cisco IOS Software Activation Command Reference			
Cisco IOS Software Modularity Installation and Configuration Guide	Installation and basic configuration of software modularity images, including installations on single and dual route		
Cisco IOS Software Modularity Command Reference	processors, installation rollbacks, software modularity binding, software modularity processes and patches.		
Cisco IOS Terminal Services Configuration Guide	DEC, local-area transport (LAT), and X.25 packet		
Cisco IOS Terminal Services Command Reference	assembler/disassembler (PAD).		
Cisco IOS XE Terminal Services Command Reference			
Cisco IOS Virtual Switch Command Reference	Virtual switch redundancy, high availability, and packet handling; converting between standalone and virtual switch modes; virtual switch link (VSL); Virtual Switch Link Protocol (VSLP).		
	Note For information about virtual switch configuration, refer to the product-specific software configuration information for the Cisco Catalyst 6500 series switch or for the Metro Ethernet 6500 series switch.		
Cisco IOS Voice Configuration Library	Cisco IOS support for voice call control protocols, interoperability,		
Cisco IOS Voice Command Reference	physical and virtual interface management, and troubleshooting. The library includes documentation for IP telephony applications.		
Cisco IOS VPDN Configuration Guide	Layer 2 Tunneling Protocol (L2TP) dial-out load balancing and redundancy, L2TP extended failover, L2TP security VPDN, multihop by Dialed Number Identification Service (DNIS),		
Cisco IOS XE VPDN Configuration Guide			
Cisco IOS VPDN Command Reference	timer and retry enhancements for L2TP and Layer 2 Forwarding (L2F), RADIUS Attribute 82: tunnel assignment ID, shell-based authentication of VPDN users, tunnel authentication via RADIUS on tunnel terminator.		
Cisco IOS Wide-Area Networking Configuration Guide	Frame Relay, Layer 2 Tunneling Protocol Version 3 (L2TPv3),		
Cisco IOS XE Wide-Area Networking Configuration Guide	Link Access Procedure, Balanced (LAPB), Switched Multimegabit Data Service (SMDS), and X.25.		
Cisco IOS Wide-Area Networking Command Reference	Muthinegaoit Data Service (SMDS), and A.23.		
Cisco IOS Wireless LAN Configuration Guide	Broadcast key rotation, IEEE 802.11x support, IEEE 802.1x		
Cisco IOS Wireless LAN Command Reference	authenticator, IEEE 802.1x local authentication service for Extensible Authentication Protocol-Flexible Authentication via Secure Tunneling (EAP-FAST), Multiple Basic Service Set ID (BSSID), Wi-Fi Multimedia (WMM) required elements, and Wi-Fi Protected Access (WPA).		

Table 2 Cisco IOS Supplementary Documents and Resources

Document Title	Description		
Cisco IOS Master Command List, All Releases	Alphabetical list of all the commands documented in all Cisco IOS releases.		
Cisco IOS New, Modified, Removed, and Replaced Commands	List of all the new, modified, removed, and replaced command for a Cisco IOS release.		
Cisco IOS Software System Messages	List of Cisco IOS system messages and descriptions. System messages may indicate problems with your system; be informational only; or may help diagnose problems with communications lines, internal hardware, or the system software.		
Cisco IOS Debug Command Reference	Alphabetical list of debug commands including brief descriptions of use, command syntax, and usage guidelines.		
Release Notes and Caveats	Information about new and changed features, system requirements, and other useful information about specific software releases; information about defects in specific Cisco IOS software releases.		
MIBs	Files used for network monitoring. To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator at the following URL:		
	http://www.cisco.com/go/mibs		
RFCs	Standards documents maintained by the Internet Engineering Task Force (IETF) that Cisco IOS documentation references where applicable. The full text of referenced RFCs may be obtained at the following URL:		
	http://www.rfc-editor.org/		

Additional Resources and Documentation Feedback

What's New in Cisco Product Documentation is published monthly and describes all new and revised Cisco technical documentation. The What's New in Cisco Product Documentation publication also provides information about obtaining the following resources:

- Technical documentation
- · Cisco product security overview
- Product alerts and field notices
- Technical assistance

Cisco IOS technical documentation includes embedded feedback forms where you can rate documents and provide suggestions for improvement. Your feedback helps us improve our documentation.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0807R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2007-2008 Cisco Systems, Inc. All rights reserved.

Using the Command-Line Interface in Cisco IOS and Cisco IOS XE Software

Last updated: August 6, 2008

This document provides basic information about the command-line interface (CLI) in Cisco IOS and Cisco IOS XE software and how you can use some of the CLI features. This document contains the following sections:

- Initially Configuring a Device, page i
- Using the CLI, page ii
- Saving Changes to a Configuration, page xii
- Additional Information, page xii

For more information about using the CLI, see the "Using the Cisco IOS Command-Line Interface" section of the Cisco IOS Configuration Fundamentals Configuration Guide.

For information about the software documentation set, see the "About Cisco IOS and Cisco IOS XE Software Documentation" document.

Initially Configuring a Device

Initially configuring a device varies by platform. For information about performing an initial configuration, see the hardware installation documentation that is provided with the original packaging of the product or go to the Product Support area of Cisco.com at http://www.cisco.com/web/psa/products/index.html.

After you have performed the initial configuration and connected the device to your network, you can configure the device by using the console port or a remote access method, such as Telnet or Secure Shell (SSH), to access the CLI or by using the configuration method provided on the device, such as Security Device Manager.

Changing the Default Settings for a Console or AUX Port

There are only two changes that you can make to a console port and an AUX port:

- Change the port speed with the **config-register 0x** command. Changing the port speed is not recommended. The well-known default speed is 9600.
- Change the behavior of the port; for example, by adding a password or changing the timeout value.

The AUX port on the Route Processor (RP) installed in a Cisco ASR1000 series router does not serve any useful customer purpose and should be accessed only under the advisement of a customer support representative.

Using the CLI

This section describes the following topics:

- Understanding Command Modes, page ii
- Using the Interactive Help Feature, page v
- Understanding Command Syntax, page vi
- Understanding Enable and Enable Secret Passwords, page viii
- Using the Command History Feature, page viii
- Abbreviating Commands, page ix
- Using Aliases for CLI Commands, page ix
- Using the no and default Forms of Commands, page x
- Using the debug Command, page x
- Filtering Output Using Output Modifiers, page x
- Understanding CLI Error Messages, page xi

Understanding Command Modes

The CLI command mode structure is hierarchical, and each mode supports a set of specific commands. This section describes the most common of the many modes that exist.

Table 1 lists common command modes with associated CLI prompts, access and exit methods, and a brief description of how each mode is used.

Table 1 CLI Command Modes

Command Mode	Access Method	Prompt	Exit Method	Mode Usage
User EXEC	Log in.	Router>	Issue the logout or exit command.	Change terminal settings.
				• Perform basic tests.
				• Display device status.
Privileged EXEC	From user EXEC mode, issue the enable	Router#	Issue the disable command or the exit command to return to user EXEC mode.	Issue show and debug commands.
	command.			Copy images to the device.
				Reload the device.
				Manage device configuration files.
				Manage device file systems.
Global configuration	From privileged EXEC mode, issue the configure terminal command.	Router(config)#	Issue the exit command or the end command to return to privileged EXEC mode.	Configure the device.
Interface configuration	From global configuration mode, issue the interface command.	Router(config-if)#	Issue the exit command to return to global configuration mode or the end command to return to privileged EXEC mode.	Configure individual interfaces.
Line configuration	From global configuration mode, issue the line vty or line console command.	Router(config-line)#	Issue the exit command to return to global configuration mode or the end command to return to privileged EXEC mode.	Configure individual terminal lines.

Table 1 CLI Command Modes (continued)

Command Mode	Access Method	Prompt	Exit Method	Mode Usage
ROM monitor	From privileged EXEC mode, issue the reload command. Press the Break key during the	rommon # > The # symbol represents the line number and increments		Run as the default operating mode when a valid image cannot be loaded.
	first 60 seconds while the system is booting.	at each prompt.		Access the fall-back procedure for loading an image when the device lacks a valid image and cannot be booted.
				Perform password recovery when a CTRL-Break sequence is issued within 60 seconds of a power-on or reload event.
Diagnostic (available only on the Cisco	The router boots or enters diagnostic mode in the following	Router(diag)#	If a Cisco IOS process failure is the reason for	Inspect various states on the router, including the Cisco IOS state.
ASR1000 series router)	in the following scenarios. When a Cisco IOS process or		entering diagnostic mode, the failure must be resolved and the	 Replace or roll back the configuration.
series router)	cisco IOS process or processes fail, in most scenarios the router will reload. • A user-configured access policy was configured using the transport-map command, which directed the user into diagnostic mode. • The router was accessed using an RP auxiliary port. • A break signal (Ctrl-C, Ctrl-Shift-6, or the send break command) was entered, and the router was configured to enter diagnostic mode when the break signal was received.		be resolved and the router must be rebooted to exit diagnostic mode. If the router is in diagnostic mode because of a transport-map configuration, access the router through another port or using a method that is configured to connect to the Cisco IOS CLI. If the RP auxiliary port was used to access the router, use another port for access. Accessing the router through the auxiliary port is not useful for customer purposes.	 Provide methods of restarting the Cisco IOS software or other processes. Reboot hardware, such as the entire router, an RP, an ESP, a SIP, a SPA, or possibly other hardware components. Transfer files into or off of the router using remote access methods such as FTP, TFTP, and SCP.

EXEC commands are not saved when the software reboots. Commands that you issue in a configuration mode can be saved to the startup configuration. If you save the running configuration to the startup configuration, these commands will execute when the software is rebooted. Global configuration mode is the highest level of configuration mode. From global configuration mode, you can enter a variety of other configuration modes, including protocol-specific modes.

ROM monitor mode is a separate mode that is used when the software cannot load properly. If a valid software image is not found when the software boots or if the configuration file is corrupted at startup, the software might enter ROM monitor mode. Use the question symbol (?) to view the commands that you can use while the device is in ROM monitor mode.

```
rommon 1 > ?

alias set and display aliases command boot boot up an external process confreg configuration register utility cont continue executing a downloaded image context display the context of a loaded image cookie display contents of cookie PROM in hex .

.
. .
. rommon 2 >
```

The following example shows how the command prompt changes to indicate a different command mode:

```
Router> enable
Router# configure terminal
Router(config)# interface ethernet 1/1
Router(config-if)# ethernet
Router(config-line)# exit
Router(config)# end
Router#
```


A keyboard alternative to the **end** command is Ctrl-Z.

Using the Interactive Help Feature

The CLI includes an interactive Help feature. Table 2 describes how to use the Help feature.

Table 2 CLI Interactive Help Commands

Command	Purpose
help	Provides a brief description of the help feature in any command mode.
?	Lists all commands available for a particular command mode.
partial command?	Provides a list of commands that begin with the character string (no space between the command and the question mark).
partial command <tab></tab>	Completes a partial command name (no space between the command and <tab>).</tab>
command?	Lists the keywords, arguments, or both associated with the command (space between the command and the question mark).
command keyword?	Lists the arguments that are associated with the keyword (space between the keyword and the question mark).

The following examples show how to use the help commands:

help

Router> help

Help may be requested at any point in a command by entering a question mark '?'. If nothing matches, the help list will be empty and you must backup until entering a '?' shows the available options.

Two styles of help are provided:

- 1. Full help is available when you are ready to enter a command argument (e.g. 'show ?') and describes each possible argument.
- 2. Partial help is provided when an abbreviated argument is entered and you want to know what arguments match the input (e.g. 'show pr?'.)

?

partial command?

```
Router(config) # zo?
zone zone-pair
```

partial command<Tab>

Router(config)# we<Tab> webvpn

command?

```
Router(config-if)# pppoe ?
enable Enable pppoe
max-sessions Maximum PPPOE sessions
```

command keyword?

```
Router(config-if)# pppoe enable ?
  group attach a BBA group
  <cr>
```

Understanding Command Syntax

Command syntax is the format in which a command should be entered in the CLI. Commands include the name of the command, keywords, and arguments. Keywords are alphanumeric strings that are used literally. Arguments are placeholders for values that a user must supply. Keywords and arguments may be required or optional.

Specific conventions convey information about syntax and command elements. Table 3 describes these conventions.

Table 3 CLI Syntax Conventions

Symbol/Text	Function	Notes
<> (angle brackets)	Indicate that the option is an argument.	Sometimes arguments are displayed without angle brackets.
A.B.C.D.	Indicates that you must enter a dotted decimal IP address.	Angle brackets (<>) are not always used to indicate that an IP address is an argument.
WORD (all capital letters)	Indicates that you must enter one word.	Angle brackets (<>) are not always used to indicate that a WORD is an argument.
LINE (all capital letters)	Indicates that you must enter more than one word.	Angle brackets (<>) are not always used to indicate that a LINE is an argument.
<cr> (carriage return)</cr>	Indicates the end of the list of available keywords and arguments, and also indicates when keywords and arguments are optional. When <cr> is the only option, you have reached the end of the branch or the end of the command if the command has only one branch.</cr>	

The following examples show syntax conventions:

```
Router(config)# ethernet cfm domain ?
 WORD domain name
Router(config)# ethernet cfm domain dname ?
 level
Router(config) # ethernet cfm domain dname level ?
 <0-7> maintenance level number
Router(config) # ethernet cfm domain dname level 7 ?
 <cr>
Router(config)# snmp-server file-transfer access-group 10 ?
 protocol protocol options
  <cr>
Router(config) # logging host ?
  Hostname or A.B.C.D IP address of the syslog server
                      Configure IPv6 syslog server
Router(config) # snmp-server file-transfer access-group 10 ?
  protocol protocol options
  <cr>
```

Understanding Enable and Enable Secret Passwords

Some privileged EXEC commands are used for actions that impact the system, and it is recommended that you set a password for these commands to prevent unauthorized use. Two types of passwords, enable (not encrypted) and enable secret (encrypted), can be set. The following commands set these passwords and are issued in global configuration mode:

- enable password
- enable secret password

Using an enable secret password is recommended because it is encrypted and more secure than the enable password. When you use an enable secret password, text is encrypted (unreadable) before it is written to the config.text file. When you use an enable password, the text is written as entered (readable) to the config.text file.

Each type of password is case sensitive, can contain from 1 to 25 uppercase and lowercase alphanumeric characters, and can start with a number. Spaces are also valid password characters; for example, "two words" is a valid password. Leading spaces are ignored, but trailing spaces are recognized.

Both password commands have numeric keywords that are single integer values. If you choose a number for the first character of your password followed by a space, the system will read the number as if it were the numeric keyword and not as part of your password.

When both passwords are set, the enable secret password takes precedence over the enable password.

To remove a password, use the **no** form of the commands: **no enable** *password* or **no enable secret** *password*.

For more information about password recovery procedures for Cisco products, see http://www.cisco.com/en/US/products/sw/iosswrel/ps1831/products_tech_note09186a00801746e6.shtml.

Using the Command History Feature

The CLI command history feature saves the commands you enter during a session in a command history buffer. The default number of commands saved is 10, but the number is configurable within the range of 0 to 256. This command history feature is particularly useful for recalling long or complex commands.

To change the number of commands saved in the history buffer for a terminal session, issue the **terminal history size** command:

Router# terminal history size num

A command history buffer is also available in line configuration mode with the same default and configuration options. To set the command history buffer size for a terminal session in line configuration mode, issue the **history** command:

Router(config-line) # history [size num]

To recall commands from the history buffer, use the following methods:

• Press Ctrl-P or the up arrow key—Recalls commands beginning with the most recent command. Repeat the key sequence to recall successively older commands.

 Press Ctrl-N or the down arrow key—Recalls the most recent commands in the history buffer after they have been recalled using Ctrl-P or the up arrow key. Repeat the key sequence to recall successively more recent commands.

The arrow keys function only on ANSI-compatible terminals such as the VT100.

Issue the **show history** command in user EXEC or privileged EXEC mode—Lists the most recent commands that you entered. The number of commands that are displayed is determined by the setting of the **terminal history size** and **history** commands.

The CLI command history feature is enabled by default. To disable this feature for a terminal session, issue the **terminal no history** command in user EXEC or privileged EXEC mode or the **no history** command in line configuration mode.

Abbreviating Commands

Typing a complete command name is not always required for the command to execute. The CLI recognizes an abbreviated command when the abbreviation contains enough characters to uniquely identify the command. For example, the **show version** command can be abbreviated as **sh ver**. It cannot be abbreviated as **s ver** because **s** could mean **show**, **set**, or **systat**. The **sh v** abbreviation also is not valid because the **show** command has **vrrp** as a keyword in addition to **version**. (Command and keyword examples from Cisco IOS Release 12.4(13)T.)

Using Aliases for CLI Commands

To save time and the repetition of entering the same command multiple times, you can use a command alias. An alias can be configured to do anything that can be done at the command line, but an alias cannot move between modes, type in passwords, or perform any interactive functions.

Table 4 shows the default command aliases.

Table 4 Default Command Aliases

Command Alias	Original Command
h	help
lo	logout
p	ping
S	show
u or un	undebug
W	where

To create a command alias, issue the **alias** command in global configuration mode. The syntax of the command is **alias** *mode command-alias original-command*. Following are some examples:

- Router(config)# alias exec prt partition—privileged EXEC mode
- Router(config)# alias configure sb source-bridge—global configuration mode
- Router(config)# alias interface rl rate-limit—interface configuration mode

To view both default and user-created aliases, issue the **show alias** command.

For more information about the **alias** command, see http://www.cisco.com/en/US/docs/ios/fundamentals/command/reference/cf_book.html.

Using the no and default Forms of Commands

Most configuration commands have a **no** form that is used to reset a command to its default value or disable a feature or function. For example, the **ip routing** command is enabled by default. To disable this command, you would issue the **no ip routing** command. To re-enable IP routing, you would issue the **ip routing** command.

Configuration commands may also have a **default** form, which returns the command settings to their default values. For commands that are disabled by default, using the **default** form has the same effect as using the **no** form of the command. For commands that are enabled by default and have default settings, the **default** form enables the command and returns the settings to their default values.

The **no** and **default** forms of commands are described in the command pages of command references.

Using the debug Command

A **debug** command produces extensive output that helps you troubleshoot problems in your network. These commands are available for many features and functions within Cisco IOS and Cisco IOS XE software. Some **debug** commands are **debug all**, **debug aaa accounting**, and **debug mpls packets**. To use **debug** commands during a Telnet session with a device, you must first enter the **terminal monitor** command. To turn off debugging completely, you must enter the **undebug all** command.

For more information about **debug** commands, see the *Cisco IOS Debug Command Reference* at http://www.cisco.com/en/US/docs/ios/debug/command/reference/db_book.html.

Debugging is a high priority and high CPU utilization process that can render your device unusable. Use **debug** commands only to troubleshoot specific problems. The best times to run debugging are during periods of low network traffic and when few users are interacting with the network. Debugging during these periods decreases the likelihood that the **debug** command processing overhead will affect network performance or user access or response times.

Filtering Output Using Output Modifiers

Many commands produce lengthy output that may use several screens to display. Using output modifiers, you can filter this output to show only the information that you want to see.

Three output modifiers are available and are described as follows:

- **begin** regular expression—Displays the first line in which a match of the regular expression is found and all lines that follow.
- include regular expression—Displays all lines in which a match of the regular expression is found.
- **exclude** regular expression—Displays all lines except those in which a match of the regular expression is found.

To use one of these output modifiers, type the command followed by the pipe symbol (I), the modifier, and the regular expression that you want to search for or filter. A regular expression is a case-sensitive alphanumeric pattern. It can be a single character or number, a phrase, or a more complex string.

The following example illustrates how to filter output of the **show interface** command to display only lines that include the expression "protocol."

```
Router# show interface | include protocol
```

```
FastEthernet0/0 is up, line protocol is up

Serial4/0 is up, line protocol is up

Serial4/1 is up, line protocol is up

Serial4/2 is administratively down, line protocol is down

Serial4/3 is administratively down, line protocol is down
```

Understanding CLI Error Messages

You may encounter some error messages while using the CLI. Table 5 shows the common CLI error messages.

Table 5 Common CLI Error Messages

Error Message	Meaning	How to Get Help
% Ambiguous command: "show con"	You did not enter enough characters for the command to be recognized.	Reenter the command followed by a space and a question mark (?). The keywords that you are allowed to enter for the command appear.
% Incomplete command.	You did not enter all the keywords or values required by the command.	Reenter the command followed by a space and a question mark (?). The keywords that you are allowed to enter for the command appear.
% Invalid input detected at "^" marker.	You entered the command incorrectly. The caret (^) marks the point of the error.	Enter a question mark (?) to display all the commands that are available in this command mode. The keywords that you are allowed to enter for the command appear.

For more system error messages, see the following documents:

- Cisco IOS Release 12.2SR System Message Guide
- Cisco IOS System Messages, Volume 1 of 2 (Cisco IOS Release 12.4)
- Cisco IOS System Messages, Volume 2 of 2 (Cisco IOS Release 12.4)

Saving Changes to a Configuration

To save changes that you made to the configuration of a device, you must issue the **copy running-config startup-config** command or the **copy system:running-config nvram:startup-config** command. When you issue these commands, the configuration changes that you made are saved to the startup configuration and saved when the software reloads or power to the device is turned off or interrupted. The following example shows the syntax of the **copy running-config startup-config** command:

```
Router# copy running-config startup-config Destination filename [startup-config]?
```

You press Enter to accept the startup-config filename (the default), or type a new filename and then press Enter to accept that name. The following output is displayed indicating that the configuration was saved:

```
Building configuration...
[OK]
Router#
```

On most platforms, the configuration is saved to NVRAM. On platforms with a Class A flash file system, the configuration is saved to the location specified by the CONFIG_FILE environment variable. The CONFIG_FILE variable defaults to NVRAM.

Additional Information

• "Using the Cisco IOS Command-Line Interface" section of the Cisco IOS Configuration Fundamentals Configuration Guide:

 $http://www.cisco.com/en/US/docs/ios/fundamentals/configuration/guide/cf_cli-basics.html\\$

"Using Cisco IOS XE Software" chapter of the Cisco ASR1000 Series Aggregation Services Routers Software Configuration Guide:

http://www.cisco.com/en/US/docs/routers/asr1000/configuration/guide/chassis/using_cli.html

• Cisco Product Support Resources

http://www.cisco.com/web/psa/products/index.html

Support area on Cisco.com (also search for documentation by task or product)

http://www.cisco.com/en/US/support/index.html

• White Paper: Cisco IOS Reference Guide

http://www.cisco.com/en/US/products/sw/iosswrel/ps1828/products_white_paper09186a008018305e.shtml

• Software Download Center (downloads; tools; licensing, registration, advisory, and general information) (requires Cisco.com User ID and password)

http://www.cisco.com/kobayashi/sw-center/

• Error Message Decoder, a tool to help you research and resolve error messages for Cisco IOS software

http://www.cisco.com/pcgi-bin/Support/Errordecoder/index.cgi

- Command Lookup Tool, a tool to help you find detailed descriptions of Cisco IOS commands (requires Cisco.com user ID and password)
 - http://tools.cisco.com/Support/CLILookup
- Output Interpreter, a troubleshooting tool that analyzes command output of supported show commands

https://www.cisco.com/pcgi-bin/Support/OutputInterpreter/home.pl\

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0807R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2007-2008 Cisco Systems, Inc. All rights reserved.

Additional Information

Getting Started with Configuring Cisco IOS NetFlow and NetFlow Data Export

This module contains the minimum amount of information about and instructions necessary for configuring NetFlow to capture and export network traffic data. This module is intended to help you get started using NetFlow and NetFlow Data Export as quickly as possible. If you want more detailed information about and instructions for configuring NetFlow and NetFlow Data Export please refer to the "Configuring NetFlow and NetFlow Data Export" module.

NetFlow capture and export are performed independently on each internetworking device on which NetFlow is enabled. NetFlow need not be operational on each router in the network.

NetFlow is a Cisco IOS application that provides statistics on packets flowing through the router. NetFlow is emerging as a primary network accounting and security technology.

Module History

This module was first published on June 19th, 2006, and last updated on June 19th, 2006.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all features. To find information about feature support and configuration, use the "Feature Information for Configuring NetFlow and NetFlow Data Export" section on page 14.

Contents

- Prerequisites for Configuring NetFlow and NetFlow Data Export, page 2
- Restrictions for Configuring NetFlow and NetFlow Data Export, page 2
- Information About Configuring NetFlow and NetFlow Data Export, page 3
- How to Configure NetFlow and NetFlow Data Export, page 4
- Configuration Examples for Configuring NetFlow and NetFlow Data Export, page 9
- Additional References, page 11

- Glossary, page 13
- Feature Information for Configuring NetFlow and NetFlow Data Export, page 14

Prerequisites for Configuring NetFlow and NetFlow Data Export

Before you enable NetFlow:

- Configure the router for IP routing
- Ensure that one of the following is enabled on your router, and on the interfaces that you want to configure NetFlow on: Cisco Express Forwarding (CEF), distributed CEF, or fast switching
- Understand the resources required on your router because NetFlow consumes additional memory and CPU resources

Restrictions for Configuring NetFlow and NetFlow Data Export

NetFlow Data Capture

NetFlow consumes additional memory. If you have memory constraints, you might want to preset the size of the NetFlow cache so that it contains a smaller number of entries. The default cache size depends on the platform. For example, the default cache size for the Cisco 7500 router is 65536 (64K) entries.

Memory Impact

During times of heavy traffic, the additional flows can fill up the global flow hash table. If you need to increase the size of the global flow hash table, increase the memory of the router.

Cisco IOS Releases 12.2(14)S, 12.0(22)S, or 12.2(15)T

If your router is running a version of Cisco IOS prior to releases 12.2(14)S, 12.0(22)S, or 12.2(15)T the **ip route-cache flow** command is used to enable NetFlow on an interface.

If your router is running Cisco IOS release 12.2(14)S, 12.0(22)S, 12.2(15)T, or later the **ip flow ingress** command is used to enable NetFlow on an interface.

Egress NetFlow Accounting in Cisco IOS 12.3T Releases, 12.3(11)T or Later

The Egress NetFlow Accounting feature captures NetFlow statistics for IP traffic only. MPLS statistics are not captured. The MPLS Egress NetFlow Accounting feature can be used on a provider edge (PE) router to capture IP traffic flow information for egress IP packets that arrived at the router as MPLS packets and underwent label disposition.

Egress NetFlow accounting might adversely affect network performance because of the additional accounting-related computation that occurs in the traffic-forwarding path of the router.

Locally generated traffic (traffic that is generated by the router on which the Egress NetFlow Accounting feature is configured) is not counted as flow traffic for the Egress NetFlow Accounting feature.

In Cisco IOS 12.2S releases, egress NetFlow captures either IPv4 or MPLS packets as they leave the router.

NetFlow Data Export

Restrictions for NetFlow Version 9 Data Export

- Backward compatibility—Version 9 is not backward-compatible with Version 5 or Version 8. If you need Version 5 or Version 8, you must configure it.
- Export bandwidth—Export bandwidth use increases for Version 9 (because of template flowsets) versus Version 5. The increase in bandwidth usage versus Version 5 varies with the frequency with which template flowsets are sent. The default is to resend templates every 20 packets, which has a bandwidth cost of about 4 percent. If necessary, you can lower the resend rate with the **ip flow-export template refresh-rate** packets command.
- Performance impact—Version 9 slightly decreases overall performance, because generating and maintaining valid template flowsets require additional processing.

Information About Configuring NetFlow and NetFlow Data Export

This section contains information that you should understand before you configure NetFlow to analyze network traffic.

- NetFlow Data Capture, page 3
- NetFlow Flows: Key Fields, page 3
- NetFlow Data Export Using the Version 9 Export Format, page 4

NetFlow Data Capture

NetFlow captures data from ingress (incoming) and egress (outgoing) packets. NetFlow gathers statistics for the following ingress IP packets:

- IP-to-IP packets
- IP-to-Multiprotocol Label Switching (MPLS) packets
- Frame Relay-terminated packets
- ATM-terminated packets

NetFlow captures data for all egress (outgoing) packets through the use of the following features:

- Egress NetFlow Accounting—NetFlow gathers statistics for all egress packets for IP traffic only.
- NetFlow MPLS Egress—NetFlow gathers statistics for all egress MPLS-to-IP packets.

NetFlow Flows: Key Fields

A network flow is identified as a unidirectional stream of packets between a given source and destination—both are defined by a network-layer IP address and by transport-layer source and destination port numbers. Specifically, a flow is identified as the combination of the following key fields:

- Source IP address
- Destination IP address

- Source port number
- Destination port number
- Layer 3 protocol type
- Type of service (ToS)
- Input logical interface

These seven key fields define a unique flow. If a packet has one key field different from another packet, it is considered to belong to another flow. A flow might contain other accounting fields (such as the AS number in the NetFlow export Version 5 flow format) that depend on the export record version that you configure. Flows are stored in the NetFlow cache.

NetFlow Data Export Using the Version 9 Export Format

NetFlow Data Export format Version 9 is a flexible and extensible format, which provides the versatility needed for support of new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, Multiprotocol Label Switching (MPLS), and Border Gateway Protocol (BGP) next hop. Version 9 export format enables you to use the same version for main and aggregation caches, and the format is extendable, so you can use the same export format with future features.

How to Configure NetFlow and NetFlow Data Export

This section contains instructions for configuring NetFlow to capture and export network traffic data. Perform the following tasks to configure NetFlow to capture and export network traffic data:

- Configure NetFlow and NetFlow Data Export Using the Version 9 Export Format, page 4 (required)
- Verify that NetFlow is Operational and View NetFlow Statistics, page 6 (optional)
- Verifying that NetFlow Data Export is Operational, page 8 (optional)

Configure NetFlow and NetFlow Data Export Using the Version 9 Export Format

Perform the steps in this required task to configure NetFlow and NetFlow Data Export Using the Version 9 Export Format.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. ip flow-export destination** {{*ip-address* | *hostname*} *udp-port*}
- 4. Repeat Step 3 once to configure an additional export destination
- 5. ip flow-export version 9
- **6. interface** *interface-type interface-number*
- 7. ip flow {ingress | egress}
- 8. exit

- **9.** Repeat Steps 6 through 8 to enable NetFlow on other interfaces
- 10. end

DETAILED STEPS

	Command or Action	Purpose	
Step 1	enable	(Required) Enables privileged EXEC mode.	
	<pre>Example: Router> enable</pre>	Enter your password if prompted.	
Step 2	configure terminal	(Required) Enters global configuration mode.	
	Example: Router# configure terminal		
Step 3	<pre>ip flow-export destination {{ip-address hostname} udp-port}</pre>	(Optional) IP address or hostname of the workstation to which you want to send the NetFlow information and the number of the UDP port on which the workstation is	
	Example: Router(config)# ip flow-export destination 172.16.10.2 99	Note The workstation is running an application such as NetFlow Collection Engine (NFC) that is used to analyze the exported data.	
Step 4	Repeat Step 3 once to configure a second NetFlow export destination.	(Optional) You can configure a maximum of two export destinations for NetFlow.	
Step 5	ip flow-export version 9	(Optional) Enables the export of information in NetFlow cache entries.	
	<pre>Example: Router(config)# ip flow-export version 9</pre>	• The version 9 keyword specifies that the export packet uses the Version 9 format.	
		Caution Entering this command on a Cisco 12000 Series Internet Router causes packet forwarding to stop for a few seconds while NetFlow reloads the route processor and line card CEF tables. To avoid interruption of service to a live network, apply this command during a change window, or include it in the startup-config file to be executed during a router reboot.	
Step 6	interface interface-type interface-number	(Required) Specifies the interface that you want to enable NetFlow on and enters interface configuration mode.	
	Example: Router(config) # interface ethernet 0/0		

	Command or Action	Purpose	
Step 7	ip flow {ingress egress}	(Required) Enables NetFlow on the interface.	
	<pre>Example: Router(config-if)# ip flow ingress or</pre>	 ingress—captures traffic that is being received by the interface egress—captures traffic that is being transmitted by the interface. 	
	<pre>Example: Router(config-if)# ip flow egress</pre>		
Step 8	exit	(Optional) Exits interface configuration mode and returns to global configuration mode.	
	Example: Router(config-if)# exit	Note You only need to use this command if you want to enable NetFlow on another interface.	
Step 9	Repeat Steps 6 through 8 to enable NetFlow on other interfaces		
Step 10	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.	
	<pre>Example: Router(config-if)# end</pre>		

Verify that NetFlow is Operational and View NetFlow Statistics

To verify that NetFlow is working properly perform the steps in this optional task.

SUMMARY STEPS

- 1. show ip flow interface
- 2. show ip cache flow
- 3. show ip cache verbose flow

DETAILED STEPS

Step 1 show ip flow interface

Use this command to display the NetFlow configuration for an interface. The following is sample output from this command:

Router# show ip flow interface Ethernet0/0 ip flow ingress Router#

Step 2 show ip cache flow

Use this command to verify that NetFlow is operational, and to display a summary of the NetFlow statistics. The following is sample output from this command:

```
Router# show ip cache flow
IP packet size distribution (1103746 total packets):
  1-32
       64 96 128 160 192 224 256 288 320 352 384 416 448
   512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
  IP Flow Switching Cache, 278544 bytes
 35 active, 4061 inactive, 980 added
 2921778 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 21640 bytes
 0 active, 1024 inactive, 0 added, 0 added to flow
 O alloc failures, O force free
 1 chunk, 1 chunk added
 last clearing of statistics never
Protocol
               Total
                      Flows
                             Packets Bytes Packets Active(Sec) Idle(Sec)
              Flows
                       /Sec
                               /Flow /Pkt
                                            /Sec
                                                              /Flow
                                                     /Flow
ТСР-ЕТР
                108
                        0.0
                                1133
                                      40
                                              2.4
                                                     1799.6
                                                                0.9
                                              2.4
                                                                 0.9
                108
                        0.0
                                1133
                                       40
                                                   1799.6
TCP-FTPD
                 54
                        0.0
                                1133
                                      40
                                              1.2
                                                    1799.6
                                                                0.8
TCP-WWW
TCP-SMTP
                 54
                        0.0
                                1133
                                      40
                                              1.2
                                                     1799.6
                                                                 0.8
                 2.7
                                      40
TCP-BGP
                        0.0
                                1133
                                             0.6
                                                     1799.6
                                                                0.7
                                       40
                                             0.6
                 27
                        0.0
                                1133
                                                     1799.6
                                                                0.7
TCP-NNTP
                                             6.8
TCP-other
                297
                        0.0
                                1133
                                       40
                                                     1799.7
                                                                0.8
                                        28
UDP-TFTP
                 27
                        0.0
                                1133
                                              0.6
                                                     1799.6
                                                                1.0
                108
                        0.0
                                1417
                                        28
                                              3.1
                                                     1799.6
                                                                 0.9
UDP-other
                                              3.1
ICMP
                135
                        0.0
                                1133
                                       427
                                                     1799.6
                                                                 0.8
                                              22.4
                945
                        0.0
                                1166
                                      91
                                                    1799.6
                                                                 0.8
Total:
SrcIf
            SrcIPaddress
                        DstIf
                                      DstIPaddress
                                                    Pr SrcP DstP Pkts
Et0/0
            192.168.67.6 Et1/0.1
                                      172.16.10.200 01 0000 0C01
            10.10.18.1 Null
                                       172.16.11.5 11 0043 0043
Et0/0
                        Null
                                                    11 0045 0045
E+0/0
            10.10.18.1
                                      172.16.11.5
                                                                   51
            10.234.53.1
Et0/0
                          Et1/0.1
                                      172.16.10.2
                                                     01 0000 0800
                                                                   51
                                                     11 0044 0044
Et.0/0
            10.10.19.1
                          Null
                                       172.16.11.6
Et0/0
            10.10.19.1
                          Null
                                       172.16.11.6
                                                     11 00A2 00A2
                                                                   51
            192.168.87.200 Et1/0.1
                                                   06 0014 0014
                                       172.16.10.2
Et0/0
                                                                   50
                                                    06 0015 0015
Et.0/0
            192.168.87.200 Et1/0.1
                                      172.16.10.2
                                                                   52
                          Et1/0.1
Et.0/0
            172.16.1.84
                                      172.16.10.19
                                                     06 0087 0087
                                                                   50
            172.16.1.84
                          Et1/0.1
                                       172.16.10.19
                                                     06 0050 0050
                                                                   51
Et0/0
Et0/0
            172.16.1.85
                          Et1/0.1
                                       172.16.10.20
                                                     06 0089 0089
                                                                   49
Et0/0
            172.16.1.85
                          Et1/0.1
                                       172.16.10.20
                                                     06 0050 0050
                                                                   50
                                                    01 0000 0800
Et0/0
            10.251.10.1
                          Et1/0.1
                                      172.16.10.2
                                                                   51
                                                    06 027C 027C
Et.0/0
            10.162.37.71
                          Null
                                       172.16.11.3
                                                                   49
Router#
```

Step 3 show ip cache verbose flow

Use this command to verify that NetFlow is operational and to display a detailed summary of the NetFlow statistics. The following is sample output from this command:

```
IP Flow Switching Cache, 278544 bytes
   35 active, 4061 inactive, 980 added
   2992518 ager polls, 0 flow alloc failures
   Active flows timeout in 30 minutes
   Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 21640 bytes
   0 active, 1024 inactive, 0 added, 0 added to flow
   O alloc failures, O force free
   1 chunk, 1 chunk added
   last clearing of statistics never
Protocol
                              Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)
                                              /Sec
-----
                              Flows
                                                              /Flow /Pkt /Sec /Flow
                                                                                                                                /Flow
                                                0.0
                                                                                                                                   0.9
TCP-FTP
                              108
                               108 0.0 1133 40 1.2 1799.0 54 0.0 1133 40 1.2 1799.6 27 0.0 1133 40 0.6 1799.6 0.0 1133 40 0.6 1799.6 0.0 1133 40 0.6 1799.6 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.6 1799.7 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 1133 40 0.0 113
                                                                 1133 40
                                                                                               2.4
                                                                                                             1799.6
TCP-FTPD
                                                                                                                                   0.9
TCP-WWW
                                                                                                                                   0.8
TCP-SMTP
                                                                                                                                    0.8
TCP-BGP
                                                                                                                                     0.7
TCP-NNTP
                                                                                                                                      0.7
TCP-other
                                                                                                                                      0.8
UDP-TFTP
                                  27
                                                  0.0
                                                                   1133
                                                                                  28
                                                                                                0.6
                                                                                                              1799.6
                                                                                                                                      1.0
                                108
                                                                   1417
UDP-other
                                                  0.0
                                                                                 2.8
                                                                                                3.0
                                                                                                              1799.6
                                                                                                                                     0.9
                                                0.0
                                                                   1133 427
                                                                                               3.0
                                                                                                           1799.6
                                                                                                                                     0.8
ICMP
                                135
                                945
                                                  0.0
                                                                   1166 91
                                                                                               21.9 1799.6
                                                                                                                                      0.8
Total:
SrcIf
                        SrcIPaddress
                                                        DstIf
                                                                                  DstIPaddress Pr TOS Flgs Pkts
                                                                                                                        B/Pk Active
Port Msk AS
                                                        Port Msk AS NextHop
                                                        Et1/0.1 172.16.10.200 01 00 10
Et0/0
                           192.168.67.6
                                                                                   0000 /0 0
                                                         0C01 /0 0
                                                                                                                                      1258.1
Et0/0
                           10.10.18.1
                                                        Null
                                                        Null 1/2.10.11.5 28
Null 172.16.11.5 11 00 10
0043 /0 0
                                                                                                                               28 1258.0
E+0/0
                           10.10.18.1
                                                        Nu111
                                                                                                                                        799
                                                        0045 /0 0 0.0.0.0
0045 /0 0
                                                                                                                               28 1258.0
                                                        Et1/0.1 172.16.10.2 01 00 10 0800 /0 0 0.0.0.0 28
Et0/0
                                                  Et1/0.1
0000 /0 0
                                                                                                                              28 1258.1
                                                                                  172.16.11.6 11 00 10
Et.0/0
                           10.10.19.1
                                                        Null
                                                                                                                                            799
0044 /0 0
                                                         0044 /0 0
                                                                                    0.0.0.0
                                                                                                                               28 1258.1
                                                        Et1/0.1
                           172.16.1.84
                                                                                    172.16.10.19 06 00 00
                                                                                                                                            799
Et0/0
0087 /0 0
                                                         0087 /0 0
                                                                                    0.0.0.0
                                                                                                                               40
                                                                                                                                      1258.1
Et.0/0
                           172.16.1.84
                                                        Et1/0.1
                                                                                  172.16.10.19 06 00 00
0050 /0 0
                                                        0050 /0 0
                                                                                  0.0.0.0
                                                                                                                              40 1258.0
Et0/0
                           172.16.1.85
                                                      Et1/0.1
                                                                                  172.16.10.20 06 00 00
                                                                                                                                           798
                                                                                  0.0.0.0
0089 /0 0
                                                        0089 /0 0
                                                                                                                              40
                                                                                                                                      1256.5
Et0/0
                           172.16.1.85
                                                        Et1/0.1
                                                                                    172.16.10.20 06 00 00
                                                                                    0.0.0.0
0050 /0 0
                                                        0050 /0 0
                                                                                                                               40
                                                                                                                                       1258.0
                                                                              0.0.0.0 40
172.16.10.2 01 00 10
0.0.0.0 1500
172.16.11.3 06 00 00
Et0/0
                           10.251.10.1
                                                        Et1/0.1
                                                                                                                1500 1258.1
0000 /0 0
                                                        0800 /0 0
                                                    Null
Et.0/0
                           10.162.37.71
                                                                                                                                       798
                                                                              0.0.0.0
027C /0 0
                                                        027C /0 0
                                                                                                                               40 1256.4
```

Verifying that NetFlow Data Export is Operational

To verify that NetFlow data export is operational and to view the statistics for NetFlow data export perform the step in this optional task.

Router#

SUMMARY STEPS

1. show ip flow export

DETAILED STEPS

Step 1 show ip flow export

Use this command to display the statistics for the NetFlow data export, including statistics for the main cache and for all other enabled caches. The following is sample output from this command:

```
Router# show ip flow export

Flow export v9 is enabled for main cache
   Exporting flows to 172.16.10.2 (99)

Exporting using source interface Ethernet0/0

Version 9 flow records

0 flows exported in 0 udp datagrams

0 flows failed due to lack of export packet

0 export packets were sent up to process level

0 export packets were dropped due to no fib

0 export packets were dropped due to adjacency issues

0 export packets were dropped due to fragmentation failures

0 export packets were dropped due to encapsulation fixup failures

Router#
```

Configuration Examples for Configuring NetFlow and NetFlow Data Export

This section contains basic NetFlow configuration examples:

- Configuring Egress NetFlow Accounting: Example, page 9
- Configuring NetFlow Subinterface Support: Example, page 9
- Configuring NetFlow Multiple Export Destinations: Example, page 10
- Configure NetFlow and NetFlow Data Export Using the Version 9 Export Format, page 10
- Configure NetFlow for Analyzing PPPoE Session Traffic, page 11

Configuring Egress NetFlow Accounting: Example

The following example shows how to configure Egress NetFlow Accounting:

```
configure terminal
!
interface ethernet 0/0
  ip flow egress
!
```

Configuring NetFlow Subinterface Support: Example

The following examples show how to configure NetFlow Subinterface Support:

- NetFlow Subinterface Support for ingress (received) traffic on a subinterface, page 10
- NetFlow SubInterface Support for egress (transmitted) traffic on a subinterface, page 10

NetFlow Subinterface Support for ingress (received) traffic on a subinterface

```
configure terminal
!
interface ethernet 0/0.1
  ip flow ingress
```

NetFlow SubInterface Support for egress (transmitted) traffic on a subinterface

```
configure terminal
!
interface ethernet 1/0.1
  ip flow egress
```


NetFlow performs additional checks for the status of each subinterface that requires more CPU processing time and bandwidth. If you have several subinterfaces configured and you want to configure NetFlow data capture on all of them, we recommend that you configure NetFlow on the main interface instead of on the individual subinterfaces.

Configuring NetFlow Multiple Export Destinations: Example

The following example shows how to configure NetFlow Multiple Export Destinations:

```
configure terminal
!
ip flow-export destination 10.10.10.10 9991
ip flow-export destination 172.16.10.2 9991
```


You can configure a maximum of two export destinations for the main cache and for each aggregation cache

Configure NetFlow and NetFlow Data Export Using the Version 9 Export Format

The following example shows how to configure NetFlow and NetFlow data export using the Version 9 export format:

```
configure terminal
!
ip flow-export destination 10.10.10.10 9991
ip flow-export version 9
!
```

Configure NetFlow for Analyzing PPPoE Session Traffic

If you want to obtain accurate NetFlow traffic statistics for PPPoE sessions, you must configure NetFlow on the virtual-template interface, not the physical interface that is configured with VLAN encapsulation. For example, if you configure NetFlow on the physical interface which is configured for VLAN encapsulation as shown in the following configuration, the NetFlow traffic statistics will not be an accurate representation of the traffic on the PPPoE sessions.

```
!
interface GigabitEthernet2/0/0.10
encapsulation dot1Q 10
ip flow egress
pppoe enable
```

The following example shows how to configure egress NetFlow on a virtual template interface so that you can accurately analyze the packet size distribution statistics of the traffic that the router is sending to the end user over the PPoE session:

```
configure terminal
Router(config)# interface Virtual-Template 1
Router(config-if)# ip unnumbered ethernet 0
Router(config-if)# encapsulation ppp
Router(config-if)# ip flow egress
```

The following display output from the **show ip cache flow** command shows that this PPPoE session traffic is comprised primarily of 1536 byte packets.

Additional References

The following sections provide references related to the configuring of NetFlow to capture and export netflow traffic data.

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
Tasks for configuring NetFlow to capture and export network traffic data	"Configuring NetFlow and NetFlow Data Export"
Tasks for configuring Configuring MPLS Aware NetFlow	Configuring MPLS Aware NetFlow
Tasks for configuring MPLS egress NetFlow accounting	Configuring MPLS Egress NetFlow Accounting and Analysis
Tasks for configuring NetFlow input filters	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow aggregation caches	"Configuring NetFlow Aggregation Caches"
Tasks for configuring NetFlow BGP next hop support	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
Tasks for configuring NetFlow multicast support	"Configuring NetFlow Multicast Accounting"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring NetFlow Layer 2 and Security Monitoring Exports	"NetFlow Layer 2 and Security Monitoring Exports"
Tasks for configuring the SNMP NetFlow MIB	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
Tasks for configuring the NetFlow MIB and Top Talkers feature	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Technical Support website contains	http://www.cisco.com/techsupport
thousands of pages of searchable technical content,	
including links to products, technologies, solutions,	
technical tips, and tools. Registered Cisco.com users	
can log in from this page to access even more content.	

Glossary

AS—autonomous system. A collection of networks under a common administration sharing a common routing strategy. Autonomous systems are subdivided by areas. An autonomous system must be assigned a unique 16-bit number by the Internet Assigned Numbers Authority (IANA).

CEF—Cisco Express Forwarding. Layer 3 IP switching technology that optimizes network performance and scalability for networks with large and dynamic traffic patterns.

BGP—Border Gateway Protocol. An interdomain routing protocol that replaces Exterior Gateway Protocol (EGP). A BGP system exchanges reachability information with other BGP systems. BGP is defined by RFC 1163.

BGP next hop—IP address of the next hop to be used by a router to reach a certain destination.

dCEF—distributed Cisco Express Forwarding. A type of CEF switching in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

export packet—Type of packet built by a device (for example, a router) with NetFlow services enabled that is addressed to another device (for example, the NetFlow Collection Engine). The packet contains NetFlow statistics. The other device processes the packet (parses, aggregates, and stores information on IP flows).

fast switching—Cisco feature in which a route cache is used to expedite packet switching through a router.

flow—A set of packets with the same source IP address, destination IP address, protocol, source/destination ports, and type-of-service, and the same interface on which the flow is monitored. Ingress flows are associated with the input interface, and egress flows are associated with the output interface.

MPLS—Multiprotocol Label Switching. An emerging industry standard for the forwarding of packets along a normally routed path (sometimes called MPLS hop-by-hop forwarding).

NetFlow—A Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

NetFlow Aggregation—A NetFlow feature that lets you summarize NetFlow export data on an IOS router before the data is exported to a NetFlow data collection system such as the NetFlow Collection Engine. This feature lowers bandwidth requirements for NetFlow export data and reduces platform requirements for NetFlow data collection devices.

NetFlow Collection Engine (formerly NetFlow FlowCollector)—Cisco application that is used with NetFlow on Cisco routers and Catalyst series switches. The NetFlow Collection Engine collects packets from the router that is running NetFlow and decodes, aggregates, and stores them. You can generate reports on various aggregations that can be set up on the NetFlow Collection Engine.

NetFlow v9—NetFlow export format Version 9. A flexible and extensible means for carrying NetFlow records from a network node to a collector. NetFlow Version 9 has definable record types and is self-describing for easier NetFlow Collection Engine configuration.

RP—Route Processor. A processor module in the Cisco 7000 series routers that contains the CPU, system software, and most of the memory components that are used in the router. Sometimes called a Supervisory Processor.

Feature Information for Configuring NetFlow and NetFlow Data Export

Table 1 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Release 12.2(1) or 12.0(3)S or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 1 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 1 Feature Information for Configuring NetFlow and NetFlow Data Export

Feature Name	Releases	Feature Configuration Information
Egress NetFlow Accounting	12.3(11)T Cisco IOS XE Release 2.1	The Egress NetFlow Accounting feature allows NetFlow statistics to be gathered on egress traffic that is exiting the router. Previous versions of NetFlow allow statistics to be gathered only on ingress traffic that is entering the router.
		In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.
		The following section provides information for configuring this feature:
		Configuring Egress NetFlow Accounting: Example
		If you want more detailed information about this feature please refer to the "Configuring NetFlow and NetFlow Data Export" module.
		The following commands were introduced by this feature: ip flow egress and ip flow-egress input-interface .
		The following commands were modified by this feature: flow-sampler, match, show ip cache flow, show ip cache verbose flow, and show ip flow interface.
NetFlow Subinterface Support	12.2(14)S, 12.0(22)S	The NetFlow Subinterface Support feature provides the ability to enable NetFlow on a per-subinterface basis.
	12.2(15)T Cisco IOS XE Release 2.1	In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.
		The following section provides information for configuring this feature:
		• Configuring NetFlow Subinterface Support: Example
		If you want more detailed information about this feature please refer to the "Configuring NetFlow and NetFlow Data Export" module.
		The following command was introduced by this feature: ip flow ingress.
		The following command was modified by this feature: show ip interface.

Table 1 Feature Information for Configuring NetFlow and NetFlow Data Export (continued)

Feature Name	Releases	Feature Configuration Information
NetFlow Multiple Export Destinations:	12.0(19)S, 12.2(2)T, 12.2(14)S Cisco IOS XE Release 2.1	The NetFlow Multiple Export Destinations feature enables configuration of multiple destinations of the NetFlow data.
		In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.
		The following section provides information for configuring this feature:
		 Configuring NetFlow Multiple Export Destinations: Example
		If you want more detailed information about this feature please refer to the "Configuring NetFlow and NetFlow Data Export" module.
		The following commands were modified by this feature: ip flow-aggregation cache , ip flow-export destination , and show ip flow export .
NetFlow v9 Export Format	12.0(24)S, 12.3(1), 12.2(18)S, 12.2(27)SBC, 12.2(18)SXF Cisco IOS XE Release 2.1	The NetFlow v9 Export Format is flexible and extensible, which provides the versatility needed to support new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, MPLS, NAT, and BGP next hop.
		In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.
		The following section provides information for configuring this feature:
		 Configure NetFlow and NetFlow Data Export Using the Version 9 Export Format
		If you want more detailed information about this feature please refer to the "Configuring NetFlow and NetFlow Data Export" module.
		The following commands were modified by this feature: debug ip flow export , export , ip flow-export , and show ip flow export .

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0804R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Feature Information for Configuring NetFlow and NetFlow Data Export

Cisco IOS NetFlow Features Roadmap

First Published: June 19, 2006 Last Updated: August 21, 2008

This feature roadmap lists the Cisco IOS features documented in the *Cisco IOS NetFlow Configuration Guide* and maps them to the documents in which they appear. The roadmap is organized so that you can select your release train and see the features in that release. Find the feature name you are searching for and click on the URL in the "Where Documented" column to access the document containing that feature.

Feature and Release Support

Table 1 lists Cisco IOS NetFlow feature support for the following Cisco IOS software release trains:

- Cisco IOS Release 12.0S
- Cisco IOS Release 12.2S
- Cisco IOS Release 12.2SB
- Cisco IOS Release 12.2SR
- Cisco IOS Release 12.2SX
- Cisco IOS Releases 12.2T, 12.3, 12.3T, 12.4, and 12.4T
- Cisco IOS XE

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which Cisco IOS and Catalyst OS software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 1 lists the most recent release of each software train first and the features in alphabetical order within the release.

Table 1 Supported Cisco IOS NetFlow Features

Release	Feature Name	Feature Description	Where Documented
Cisco IOS Rele	ase 12.0S		
12.0(26)S 12.0(25)S 12.0(24)S	MPLS-aware NetFlow	Multiprotocol Label Switching (MPLS)-aware NetFlow is an extension of the NetFlow accounting feature that provides highly granular traffic statistics for Cisco routers. MPLS-aware NetFlow collects statistics on a per-flow basis just as NetFlow does. MPLS-aware NetFlow uses the NetFlow Version 9 export format.	"Configuring MPLS-aware NetFlow"
12.0(26)S	NetFlow BGP Next Hop Support	The NetFlow Border Gateway Protocol (BGP) Next Hop Support feature lets you measure network traffic on a per BGP next hop basis. Without the NetFlow BGP Next Hop Support feature, NetFlow exports only IP next hop information (which provides data on only the next router); this feature adds BGP next hop information to the data export.	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
12.0(11)S	NetFlow Minimum Prefix Mask for Router-Based Aggregation	The NetFlow Minimum Prefix Mask for Router-Based Aggregation feature allows you to set a minimum mask size for prefix aggregation, destination-prefix aggregation, and source-prefix aggregation schemes.	"Configuring NetFlow Aggregation Caches"
12.0(19)S	NetFlow Multiple Export Destinations	The NetFlow Multiple Export Destinations feature enables configuration of multiple destinations of the NetFlow data.	"Configuring NetFlow and NetFlow Data Export"
12.0(22)S	NetFlow Subinterface Support	The NetFlow Subinterface Support feature provides the ability to enable NetFlow on a per-subinterface basis.	"Configuring NetFlow and NetFlow Data Export"
12.0(15)S	NetFlow ToS-Based Router Aggregation	The NetFlow ToS-Based Router Aggregation feature enables you to limit router-based type of service (ToS) aggregation of NetFlow export data. The aggregation of export data provides a summarized NetFlow export data that can be exported to a collection device. The result is lower bandwidth requirements for NetFlow export data and reduced platform requirements for NetFlow data collection devices.	"Configuring NetFlow Aggregation Caches"
12.0(24)S	NetFlow v9 Export Format	NetFlow Version 9 is a flexible and extensible format, which provides the versatility needed to support new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, Multiprotocol Label Switching (MPLS), and Border Gateway Protocol (BGP) next hop. The distinguishing feature of the NetFlow Version 9 format is that it is template based.	"Configuring NetFlow and NetFlow Data Export"

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release	Feature Name	Feature Description	Where Documented
12.0(26)S	Random Sampled NetFlow	Random Sampled NetFlow provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of <i>n</i> sequential packets (<i>n</i> is a user-configurable parameter). Packets are sampled as they arrive (before any NetFlow cache entries are made for those packets). Statistical traffic sampling substantially reduces consumption of router resources (especially CPU resources) while providing valuable NetFlow data. The main uses of Random Sampled NetFlow are traffic engineering, capacity planning, and applications where full NetFlow is not needed for an accurate view of network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Cisco IOS Rele	ease 12.2\$		
12.2(18)S	NetFlow BGP Next Hop Support	The NetFlow Border Gateway Protocol (BGP) Next Hop Support feature lets you measure network traffic on a per BGP next hop basis. Without the NetFlow BGP Next Hop Support feature, NetFlow exports only IP next hop information (which provides data on only the next router); this feature adds BGP next hop information to the data export.	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
12.2(25)S	NetFlow Input Filters	The NetFlow Input Filters feature provides NetFlow data for a specific subset of traffic by letting you create filters to select flows for NetFlow processing. For example, you can select flows from a specific group of hosts. This feature also lets you select various sampling rates for selected flows. The NetFlow Input Filters feature is used, for example, for class-based traffic analysis and monitoring on-network or off-network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
12.2(25)S	NetFlow MIB	The NetFlow MIB feature provides MIB objects to allow you to monitor flow cache information, the current NetFlow configuration, and statistics.	"Configuring SNMP and the NetFlow MIB to Monitor NetFlow Data"
12.2(25)S	NetFlow MIB and Top Talkers	The NetFlow MIB and Top Talkers feature uses NetFlow functionality to obtain information regarding heaviest traffic patterns and most-used applications in the network.	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
12.2(18)S	NetFlow Multicast Support	The NetFlow Multicast Support feature lets you capture multicast-specific data (both packets and bytes) for multicast flows. For example, you can capture the packet-replication factor for a specific flow as well as for each outgoing stream. This feature provides complete end-to-end usage information about network traffic for a complete multicast traffic billing solution.	"Configuring NetFlow Multicast Accounting"

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release	Feature Name	Feature Description	Where Documented
12.2(14)S	NetFlow Multiple Export Destinations	The NetFlow Multiple Export Destinations feature enables configuration of multiple destinations of the NetFlow data.	"Configuring NetFlow and NetFlow Data Export"
12.2(14)S	NetFlow Subinterface Support	The NetFlow Subinterface Support feature provides the ability to enable NetFlow on a per-subinterface basis.	"Configuring NetFlow and NetFlow Data Export"
12.2(14)S	NetFlow ToS-Based Router Aggregation	The NetFlow ToS-Based Router Aggregation feature enables you to limit router-based type of service (ToS) aggregation of NetFlow export data. The aggregation of export data provides a summarized NetFlow export data that can be exported to a collection device. The result is lower bandwidth requirements for NetFlow export data and reduced platform requirements for NetFlow data collection devices.	"Configuring NetFlow Aggregation Caches"
12.2(18)S	NetFlow v9 Export Format	NetFlow Version 9 is a flexible and extensible format, which provides the versatility needed to support new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, Multiprotocol Label Switching (MPLS), and Border Gateway Protocol (BGP) next hop. The distinguishing feature of the NetFlow Version 9 format is that it is template based.	"Configuring NetFlow and NetFlow Data Export"
12.2(18)S	Random Sampled NetFlow	Random Sampled NetFlow provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of <i>n</i> sequential packets (<i>n</i> is a user-configurable parameter). Packets are sampled as they arrive (before any NetFlow cache entries are made for those packets). Statistical traffic sampling substantially reduces consumption of router resources (especially CPU resources) while providing valuable NetFlow data. The main uses of Random Sampled NetFlow are traffic engineering, capacity planning, and applications where full NetFlow is not needed for an accurate view of network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Cisco IOS Relea	se 12.2SB		
12.2(28)SBB	Egress NetFlow Accounting	The Egress NetFlow Accounting feature allows NetFlow statistics to be gathered on egress traffic that is exiting the router. Previous versions of NetFlow allowed statistics to be gathered only on ingress traffic entering the router.	"Configuring NetFlow and NetFlow Data Export"

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release	Feature Name	Feature Description	Where Documented
12.2(27)SBC	NetFlow BGP Next Hop Support	The NetFlow Border Gateway Protocol (BGP) Next Hop Support feature lets you measure network traffic on a per BGP next hop basis. Without the NetFlow BGP Next Hop Support feature, NetFlow exports only IP next hop information (which provides data on only the next router); this feature adds BGP next hop information to the data export.	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
12.2(31)SB2	NetFlow MIB	The NetFlow MIB feature provides MIB objects to allow you to monitor flow cache information, the current NetFlow configuration, and statistics.	"Configuring SNMP and the NetFlow MIB to Monitor NetFlow Data"
12.2(27)SBC	NetFlow Minimum Prefix Mask for Router-Based Aggregation	The NetFlow Minimum Prefix Mask for Router-Based Aggregation feature allows you to set a minimum mask size for prefix aggregation, destination-prefix aggregation, and source-prefix aggregation schemes.	"Configuring NetFlow Aggregation Caches"
12.2(27)SBC	NetFlow Multicast Support	The NetFlow Multicast Support feature lets you capture multicast-specific data (both packets and bytes) for multicast flows. For example, you can capture the packet-replication factor for a specific flow as well as for each outgoing stream. This feature provides complete end-to-end usage information about network traffic for a complete multicast traffic billing solution.	"Configuring NetFlow Multicast Accounting"
12.2(27)SBC	NetFlow Multiple Export Destinations	The NetFlow Multiple Export Destinations feature enables configuration of multiple destinations of the NetFlow data.	"Configuring NetFlow and NetFlow Data Export"
12.2(27)SBC	NetFlow Subinterface Support	The NetFlow Subinterface Support feature provides the ability to enable NetFlow on a per-subinterface basis.	"Configuring NetFlow and NetFlow Data Export"
12.2(27)SBB	NetFlow ToS-Based Router Aggregation	The NetFlow ToS-Based Router Aggregation feature enables you to limit router-based type of service (ToS) aggregation of NetFlow export data. The aggregation of export data provides a summarized NetFlow export data that can be exported to a collection device. The result is lower bandwidth requirements for NetFlow export data and reduced platform requirements for NetFlow data collection devices.	"Configuring NetFlow Aggregation Caches"
12.2(27)SBC	NetFlow v9 Export Format	NetFlow Version 9 is a flexible and extensible format, which provides the versatility needed to support new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, Multiprotocol Label Switching (MPLS), and Border Gateway Protocol (BGP) next hop. The distinguishing feature of the NetFlow Version 9 format is that it is template based.	"Configuring NetFlow and NetFlow Data Export"

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release	Feature Name	Feature Description	Where Documented
12.2(28)SB	MPLS-aware NetFlow	Multiprotocol Label Switching (MPLS)-aware NetFlow is an extension of the NetFlow accounting feature that provides highly granular traffic statistics for Cisco routers. MPLS-aware NetFlow collects statistics on a per-flow basis just as NetFlow does. MPLS-aware NetFlow uses the NetFlow Version 9 export format.	"Configuring MPLS-aware NetFlow"
12.2(27)SBC	Random Sampled NetFlow	Random Sampled NetFlow provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of <i>n</i> sequential packets (<i>n</i> is a user-configurable parameter). Packets are sampled as they arrive (before any NetFlow cache entries are made for those packets). Statistical traffic sampling substantially reduces consumption of router resources (especially CPU resources) while providing valuable NetFlow data. The main uses of Random Sampled NetFlow are traffic engineering, capacity planning, and applications where full NetFlow is not needed for an accurate view of network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Cisco IOS Relea	se 12.2SR		
12.2(33)SRA	Egress NetFlow Accounting	The Egress NetFlow Accounting feature allows NetFlow statistics to be gathered on egress traffic that is exiting the router. Previous versions of NetFlow allowed statistics to be gathered only on ingress traffic entering the router.	"Configuring NetFlow and NetFlow Data Export"
12.2(33)SRA	MPLS Egress NetFlow Accounting	The MPLS Egress NetFlow Accounting feature allows you to capture IP flow information for packets undergoing MPLS label disposition; that is, packets that arrive on a router as MPLS packets and are transmitted as IP packets.	Configuring MPLS Egress NetFlow Accounting and Analysis
12.2(33)SRB	NDE for VRF Interfaces	The NetFlow data export (NDE) for VRF Interfaces feature enables the creation and export of hardware NetFlow cache entries for traffic entering a router on the last multi-protocol label switching (MPL)S hop of an IPv4 MPLS virtual private network (VPN).	"NDE for VRF Interfaces"
12.2(33)SRA	NetFlow BGP Next Hop Support	The NetFlow Border Gateway Protocol (BGP) Next Hop Support feature lets you measure network traffic on a per BGP next hop basis. Without the NetFlow BGP Next Hop Support feature, NetFlow exports only IP next hop information (which provides data on only the next router); this feature adds BGP next hop information to the data export.	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release	Feature Name	Feature Description	Where Documented
12.2(33)SRA	NetFlow Input Filters	The NetFlow Input Filters feature provides NetFlow data for a specific subset of traffic by letting you create filters to select flows for NetFlow processing. For example, you can select flows from a specific group of hosts. This feature also lets you select various sampling rates for selected flows. The NetFlow Input Filters feature is used, for example, for class-based traffic analysis and monitoring on-network or off-network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
12.2(33)SRA	NetFlow Minimum Prefix Mask for Router-Based Aggregation	The NetFlow Minimum Prefix Mask for Router-Based Aggregation feature allows you to set a minimum mask size for prefix aggregation, destination-prefix aggregation, and source-prefix aggregation schemes.	"Configuring NetFlow Aggregation Caches"
12.2(33)SRA	NetFlow Multicast Support	The NetFlow Multicast Support feature lets you capture multicast-specific data (both packets and bytes) for multicast flows. For example, you can capture the packet-replication factor for a specific flow as well as for each outgoing stream. This feature provides complete end-to-end usage information about network traffic for a complete multicast traffic billing solution.	"Configuring NetFlow Multicast Accounting"
12.2(33)SRA	NetFlow Multiple Export Destinations	The NetFlow Multiple Export Destinations feature enables configuration of multiple destinations of the NetFlow data.	"Configuring NetFlow and NetFlow Data Export"
12.2(33)SRA	NetFlow Subinterface Support	The NetFlow Subinterface Support feature provides the ability to enable NetFlow on a per-subinterface basis.	"Configuring NetFlow and NetFlow Data Export"
12.2(33)SRA	NetFlow ToS-Based Router Aggregation	The NetFlow ToS-Based Router Aggregation feature enables you to limit router-based type of service (ToS) aggregation of NetFlow export data. The aggregation of export data provides a summarized NetFlow export data that can be exported to a collection device. The result is lower bandwidth requirements for NetFlow export data and reduced platform requirements for NetFlow data collection devices.	"Configuring NetFlowAggregation Caches"
12.2(33)SRA	NetFlow v9 Export Format	NetFlow Version 9 is a flexible and extensible format, which provides the versatility needed to support new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, Multiprotocol Label Switching (MPLS), and Border Gateway Protocol (BGP) next hop. The distinguishing feature of the NetFlow Version 9 format is that it is template based.	"Configuring NetFlow and NetFlow Data Export"
12.2(33)SRB	NetFlow v9 For IPv6	The NetFlow v9 For IPv6 feature adds version 9 export support for IPv6.	"NetFlow v9 For IPv6"

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release	Feature Name	Feature Description	Where Documented	
12.2(33)SRA	Random Sampled NetFlow	Random Sampled NetFlow provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of <i>n</i> sequential packets (<i>n</i> is a user-configurable parameter). Packets are sampled as they arrive (before any NetFlow cache entries are made for those packets). Statistical traffic sampling substantially reduces consumption of router resources (especially CPU resources) while providing valuable NetFlow data. The main uses of Random Sampled NetFlow are traffic engineering, capacity planning, and applications where full NetFlow is not needed for an accurate view of network traffic.	Network Traffic to Track"	
Cisco IOS Relea	se 12.2SX			
12.2(18)SXF	Egress NetFlow Accounting	The Egress NetFlow Accounting feature allows NetFlow statistics to be gathered on egress traffic that is exiting the router. Previous versions of NetFlow allowed statistics to be gathered only on ingress traffic entering the router.	"Configuring NetFlow and NetFlow Data Export"	
12.2(18)SXE	MPLS Egress NetFlow Accounting	The MPLS Egress NetFlow Accounting feature allows you to capture IP flow information for packets undergoing MPLS label disposition; that is, packets that arrive on a router as MPLS packets and are transmitted as IP packets.	Configuring MPLS Egress NetFlow Accounting and Analysis	
12.2(18)SXF	NetFlow BGP Next Hop Support	The NetFlow Border Gateway Protocol (BGP) Next Hop Support feature lets you measure network traffic on a per BGP next hop basis. Without the NetFlow BGP Next Hop Support feature, NetFlow exports only IP next hop information (which provides data on only the next router); this feature adds BGP next hop information to the data export.	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"	
12.28X ¹	NetFlow Input Filters	The NetFlow Input Filters feature provides NetFlow data for a specific subset of traffic by letting you create filters to select flows for NetFlow processing. For example, you can select flows from a specific group of hosts. This feature also lets you select various sampling rates for selected flows. The NetFlow Input Filters feature is used, for example, for class-based traffic analysis and monitoring on-network or off-network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"	
12.28X ¹	NetFlow MIB and Top Talkers	The NetFlow MIB and Top Talkers feature uses NetFlow functionality to obtain information regarding heaviest traffic patterns and most-used applications in the network.	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"	

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release	Feature Name	Feature Description	Where Documented
12.2(18)SXF	NetFlow Minimum Prefix Mask for Router-Based Aggregation	The NetFlow Minimum Prefix Mask for Router-Based Aggregation feature allows you to set a minimum mask size for prefix aggregation, destination-prefix aggregation, and source-prefix aggregation schemes.	"Configuring NetFlow Aggregation Caches"
12.2(18)SXF	NetFlow Multicast Support	The NetFlow Multicast Support feature lets you capture multicast-specific data (both packets and bytes) for multicast flows. For example, you can capture the packet-replication factor for a specific flow as well as for each outgoing stream. This feature provides complete end-to-end usage information about network traffic for a complete multicast traffic billing solution.	"Configuring NetFlow Multicast Accounting"
12.2(18)SXE	NetFlow Multiple Export Destinations	The NetFlow Multiple Export Destinations feature enables configuration of multiple destinations of the NetFlow data.	"Configuring NetFlow and NetFlow Data Export"
12.2(33)SXH	NetFlow Subinterface Support	The NetFlow Subinterface Support feature provides the ability to enable NetFlow on a per-subinterface basis.	"Configuring NetFlow and NetFlow Data Export"
12.2(18)SXF	NetFlow ToS-Based Router Aggregation	The NetFlow ToS-Based Router Aggregation feature enables you to limit router-based type of service (ToS) aggregation of NetFlow export data. The aggregation of export data provides a summarized NetFlow export data that can be exported to a collection device. The result is lower bandwidth requirements for NetFlow export data and reduced platform requirements for NetFlow data collection devices.	"Configuring NetFlowAggregation Caches"
12.2(18)SXF	NetFlow v9 Export Format	NetFlow Version 9 is a flexible and extensible format, which provides the versatility needed to support new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, Multiprotocol Label Switching (MPLS), and Border Gateway Protocol (BGP) next hop. The distinguishing feature of the NetFlow Version 9 format is that it is template based.	"Configuring NetFlow and NetFlow Data Export"

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release	Feature Name	Feature Description	Where Documented	
12.2(18)SXF	Random Sampled NetFlow	Random Sampled NetFlow provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of <i>n</i> sequential packets (<i>n</i> is a user-configurable parameter). Packets are sampled as they arrive (before any NetFlow cache entries are made for those packets). Statistical traffic sampling substantially reduces consumption of router resources (especially CPU resources) while providing valuable NetFlow data. The main uses of Random Sampled NetFlow are traffic engineering, capacity planning, and applications where full NetFlow is not needed for an accurate view of network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"	
Cisco IOS Relea	ses 12.2T, 12.3, 12.3T, 12.4, and 1	2.4T		
12.3(11)T	Egress NetFlow Accounting	The Egress NetFlow Accounting feature allows NetFlow statistics to be gathered on egress traffic that is exiting the router. Previous versions of NetFlow allowed statistics to be gathered only on ingress traffic entering the router.	"Configuring NetFlow and NetFlow Data Export"	
12.3(8)T	MPLS-aware NetFlow	Multiprotocol Label Switching (MPLS)-aware NetFlow is an extension of the NetFlow accounting feature that provides highly granular traffic statistics for Cisco routers. MPLS-aware NetFlow collects statistics on a per-flow basis just as NetFlow does. MPLS-aware NetFlow uses the NetFlow Version 9 export format.	"Configuring MPLS-aware NetFlow"	
12.3(11)T	MPLS Egress NetFlow Accounting	The MPLS Egress NetFlow Accounting feature allows you to capture IP flow information for packets undergoing MPLS label disposition; that is, packets that arrive on a router as MPLS packets and are transmitted as IP packets.	Configuring MPLS Egress NetFlow Accounting and Analysis	
12.3(1)	NetFlow BGP Next Hop Support	The NetFlow Border Gateway Protocol (BGP) Next Hop Support feature lets you measure network traffic on a per BGP next hop basis. Without the NetFlow BGP Next Hop Support feature, NetFlow exports only IP next hop information (which provides data on only the next router); this feature adds BGP next hop information to the data export.	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"	
12.4(4)T	NetFlow Dynamic Top Talkers CLI	The NetFlow Dynamic Top Talkers CLI feature gives you an overview of the highest volume traffic in your network by aggregating flows on a common field. For example, you can aggregate all of the flows for a destination network by aggregating them on the destination prefix.	Detecting and Analyzing Network Threats With NetFlow	

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release	Feature Name	Feature Description	Where Documented
12.3(4)T	NetFlow Input Filters	The NetFlow Input Filters feature provides NetFlow data for a specific subset of traffic by letting you create filters to select flows for NetFlow processing. For example, you can select flows from a specific group of hosts. This feature also lets you select various sampling rates for selected flows. The NetFlow Input Filters feature is used, for example, for class-based traffic analysis and monitoring on-network or off-network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
12.3(14)T	NetFlow Layer 2 and Security Monitoring Exports	The NetFlow Layer 2 and Security Monitoring Exports feature adds the ability for NetFlow to capture the values from several fields in Layer 3 IP traffic and Layer 2 LAN traffic to obtain information that can be used to classify and identify network traffic. This information can be used to help identify network attacks and their origin.	"NetFlow Layer 2 and Security Monitoring Exports"
12.3(7)T	NetFlow MIB	The NetFlow MIB feature provides MIB objects to allow you to monitor flow cache information, the current NetFlow configuration, and statistics.	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
12.3(11)T	NetFlow MIB and Top Talkers	The NetFlow MIB and Top Talkers feature uses NetFlow functionality to obtain information regarding heaviest traffic patterns and most-used applications in the network.	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
12.1(2)T	NetFlow Minimum Prefix Mask for Router-Based Aggregation	The NetFlow Minimum Prefix Mask for Router-Based Aggregation feature allows you to set a minimum mask size for prefix aggregation, destination-prefix aggregation, and source-prefix aggregation schemes.	"Configuring NetFlow Aggregation Caches"
12.3(1)	NetFlow Multicast Support	The NetFlow Multicast Support feature lets you capture multicast-specific data (both packets and bytes) for multicast flows. For example, you can capture the packet-replication factor for a specific flow as well as for each outgoing stream. This feature provides complete end-to-end usage information about network traffic for a complete multicast traffic billing solution.	
12.2(2)T	NetFlow Multiple Export Destinations	The NetFlow Multiple Export Destinations feature enables configuration of multiple destinations of the NetFlow data.	"Configuring NetFlow and NetFlow Data Export"
12.4(4)T	NetFlow Reliable Export with SCTP	The NetFlow Reliable Export With SCTP feature provides a more robust and flexible method for exporting NetFlow data to collectors than UDP, which was the only transport option prior to the introduction of this feature.	NetFlow Reliable Export With SCTP

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release Feature Name		Feature Description	Where Documented	
12.2(15)T	NetFlow Subinterface Support	The NetFlow Subinterface Support feature provides the ability to enable NetFlow on a per-subinterface basis.	"Configuring NetFlow and NetFlow Data Export"	
12.2(4)T	NetFlow ToS-Based Router Aggregation	The NetFlow ToS-Based Router Aggregation feature enables you to limit router-based type of service (ToS) aggregation of NetFlow export data. The aggregation of export data provides a summarized NetFlow export data that can be exported to a collection device. The result is lower bandwidth requirements for NetFlow export data and reduced platform requirements for NetFlow data collection devices.	"Configuring NetFlowAggregation Caches"	
12.3(1)	NetFlow v9 Export Format	NetFlow Version 9 is a flexible and extensible format, which provides the versatility needed to support new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, Multiprotocol Label Switching (MPLS), and Border Gateway Protocol (BGP) next hop. The distinguishing feature of the NetFlow Version 9 format is that it is template based.	"Configuring NetFlow and NetFlow Data Export"	
12.3(2)T	Random Sampled NetFlow	Random Sampled NetFlow provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of <i>n</i> sequential packets (<i>n</i> is a user-configurable parameter). Packets are sampled as they arrive (before any NetFlow cache entries are made for those packets). Statistical traffic sampling substantially reduces consumption of router resources (especially CPU resources) while providing valuable NetFlow data. The main uses of Random Sampled NetFlow are traffic engineering, capacity planning, and applications where full NetFlow is not needed for an accurate view of network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"	
12.4(2)T	Support for capturing the value from the fragment offset field of IP headers added to NetFlow Layer 2 and Security Monitoring Exports ²	The NetFlow Layer 2 and Security Monitoring Exports feature enables the capture of values from fields in Layer 3 and Layer 2 of IP traffic for accounting and security analysis.	Detecting and Analyzing Network Threats With NetFlow	
Cisco IOS XE				
Release 2.1	Egress NetFlow Accounting	The Egress NetFlow Accounting feature allows NetFlow statistics to be gathered on egress traffic that is exiting the router. Previous versions of NetFlow allowed statistics to be gathered only on ingress traffic entering the router.	"Configuring NetFlow and NetFlow Data Export"	

Table 1 Supported Cisco IOS NetFlow Features (continued)

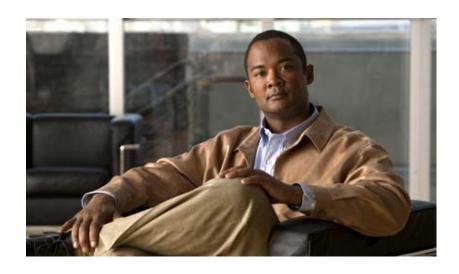
Release	Feature Name	Feature Description	Where Documented	
e (a P c r		The NetFlow ToS-Based Router Aggregation feature enables you to limit router-based type of service (ToS) aggregation of NetFlow export data. The aggregation of export data provides a summarized NetFlow export data that can be exported to a collection device. The result is lower bandwidth requirements for NetFlow export data and reduced platform requirements for NetFlow data collection devices.	"Configuring NetFlowAggregation Caches"	
Release 2.1	NetFlow Input Filters	The NetFlow Input Filters feature provides NetFlow data for a specific subset of traffic by letting you create filters to select flows for NetFlow processing. For example, you can select flows from a specific group of hosts. This feature also lets you select various sampling rates for selected flows. The NetFlow Input Filters feature is used, for example, for class-based traffic analysis and monitoring on-network or off-network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"	
Release 2.1	NetFlow Minimum Prefix Mask for Router-Based Aggregation	The NetFlow Minimum Prefix Mask for Router-Based Aggregation feature allows you to set a minimum mask size for prefix aggregation, destination-prefix aggregation, and source-prefix aggregation schemes.	"Configuring NetFlow Aggregation Caches"	
Release 2.1	NetFlow Multiple Export Destinations	The NetFlow Multiple Export Destinations feature enables configuration of multiple destinations of the NetFlow data.	"Configuring NetFlow and NetFlow Data Export"	
Release 2.1	NetFlow Subinterface Support	The NetFlow Subinterface Support feature provides the ability to enable NetFlow on a per-subinterface basis.	"Configuring NetFlow and NetFlow Data Export"	

Table 1 Supported Cisco IOS NetFlow Features (continued)

Release	Feature Name	Feature Description	Where Documented	
Release 2.1	NetFlow v9 Export Format	NetFlow Version 9 is a flexible and extensible format, which provides the versatility needed to support new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, Multiprotocol Label Switching (MPLS), and Border Gateway Protocol (BGP) next hop. The distinguishing feature of the NetFlow Version 9 format is that it is template based.	"Configuring NetFlow and NetFlow Data Export"	
Release 2.1	Random Sampled NetFlow	Random Sampled NetFlow provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of <i>n</i> sequential packets (<i>n</i> is a user-configurable parameter). Packets are sampled as they arrive (before any NetFlow cache entries are made for those packets). Statistical traffic sampling substantially reduces consumption of router resources (especially CPU resources) while providing valuable NetFlow data. The main uses of Random Sampled NetFlow are traffic engineering, capacity planning, and applications where full NetFlow is not needed for an accurate view of network traffic.	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"	

^{1.} This feature is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.


All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0807R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

^{2.} This is a minor enhancement. Minor enhancements are not typically listed in Feature Navigator.

Cisco IOS NetFlow Configuration Guides

Configuring NetFlow and NetFlow Data Export

This module contains information about and instructions for configuring NetFlow to capture and export network traffic data. NetFlow capture and export are performed independently on each internetworking device on which NetFlow is enabled. NetFlow need not be operational on each router in the network.

NetFlow is a Cisco IOS application that provides statistics on packets flowing through the router. NetFlow is emerging as a primary network accounting and security technology.

Module History

This module was first published on June 19th, 2006, and last updated on June 19th, 2006.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all features. To find information about feature support and configuration, use the "Feature Information for Configuring NetFlow and NetFlow Data Export" section on page 37.

Contents

- Prerequisites for Configuring NetFlow and NetFlow Data Export, page 1
- Restrictions for Configuring NetFlow and NetFlow Data Export, page 2
- Information About Configuring NetFlow and NetFlow Data Export, page 3
- How to Configure NetFlow and NetFlow Data Export, page 19
- Configuration Examples for Configuring NetFlow and NetFlow Data Export, page 31
- Additional References, page 34
- Glossary, page 36
- Feature Information for Configuring NetFlow and NetFlow Data Export, page 37

Prerequisites for Configuring NetFlow and NetFlow Data Export

Before you enable NetFlow you must:

- Configure the router for IP routing
- Ensure that one of the following is enabled on your router, and on the interfaces that you want to configure NetFlow on: Cisco Express Forwarding (CEF), distributed CEF, or fast switching
- Understand the resources required on your router because NetFlow consumes additional memory and CPU resources

Restrictions for Configuring NetFlow and NetFlow Data Export

NetFlow Data Capture

NetFlow consumes additional memory. If you have memory constraints, you might want to preset the size of the NetFlow cache so that it contains a smaller number of entries. The default cache size depends on the platform. For example, the default cache size for the Cisco 7500 router is 65536 (64K) entries.

Memory Impact

During times of heavy traffic, the additional flows can fill up the global flow hash table. If you need to increase the size of the global flow hash table, increase the memory of the router.

Cisco IOS Releases 12.2(14)S, 12.0(22)S, or 12.2(15)T

If your router is running a version of Cisco IOS prior to releases 12.2(14)S, 12.0(22)S, or 12.2(15)T the **ip route-cache flow** command is used to enable NetFlow on an interface.

If your router is running Cisco IOS release 12.2(14)S, 12.0(22)S, 12.2(15)T, or later the **ip flow ingress** command is used to enable NetFlow on an interface.

Egress NetFlow Accounting in Cisco IOS 12.3T Releases, 12.3(11)T or Later

The Egress NetFlow Accounting feature captures NetFlow statistics for IP traffic only. MPLS statistics are not captured. The MPLS Egress NetFlow Accounting feature can be used on a provider edge (PE) router to capture IP traffic flow information for egress IP packets that arrived at the router as MPLS packets and underwent label disposition.

Egress NetFlow accounting might adversely affect network performance because of the additional accounting-related computation that occurs in the traffic-forwarding path of the router.

Locally generated traffic (traffic that is generated by the router on which the Egress NetFlow Accounting feature is configured) is not counted as flow traffic for the Egress NetFlow Accounting feature.

In Cisco IOS 12.2S releases, egress NetFlow captures either IPv4 or MPLS packets as they leave the router.

NetFlow Data Export

Restrictions for NetFlow Version 9 Data Export

• Backward compatibility—Version 9 is not backward-compatible with Version 5 or Version 8. If you need Version 5 or Version 8, you must configure it.

- Export bandwidth—Export bandwidth use increases for Version 9 (because of template flowsets) versus Version 5. The increase in bandwidth usage versus Version 5 varies with the frequency with which template flowsets are sent. The default is to resend templates every 20 packets, which has a bandwidth cost of about 4 percent. If necessary, you can lower the resend rate with the **ip flow-export template refresh-rate** packets command.
- Performance impact—Version 9 slightly decreases overall performance, because generating and maintaining valid template flowsets require additional processing.

Restrictions for NetFlow Version 8 Export Format

Version 8 export format is available only for aggregation caches, and it cannot be expanded to support new features.

Restrictions for NetFlow Version 5 Export Format

Version 5 export format is suitable only for the main cache, and it cannot be expanded to support new features.

Restrictions for NetFlow Version 1 Export Format

The Version 1 format was the initially released version. Do not use Version 1 format unless you are using a legacy collection system that requires it. Use Version 9 or Version 5 export format.

Information About Configuring NetFlow and NetFlow Data Export

This section contains information that you should understand before you configure NetFlow to analyze network traffic.

- NetFlow Data Capture, page 3
- NetFlow Cache Management and Data Export, page 4
- NetFlow Cache Management and Data Export, page 4
- NetFlow Export Format Versions 9, 8, 5, and 1, page 5
- Egress NetFlow Accounting Benefits: NetFlow Accounting Simplified, page 17
- NetFlow Subinterface Support Benefits: Fine-Tuning Your Data Collection, page 19
- NetFlow Multiple Export Destinations: Benefits, page 19
- NetFlow on a Distributed VIP Interface, page 19

NetFlow Data Capture

NetFlow captures data from ingress (incoming) and egress (outgoing) packets. NetFlow gathers statistics for the following ingress IP packets:

- IP-to-IP packets
- IP-to-Multiprotocol Label Switching (MPLS) packets
- · Frame Relay-terminated packets
- ATM-terminated packets

NetFlow captures data for all egress (outgoing) packets through the use of the following features:

- Egress NetFlow Accounting—NetFlow gathers statistics for all egress packets for IP traffic only.
- NetFlow MPLS Egress—NetFlow gathers statistics for all egress MPLS-to-IP packets.

NetFlow Flows: Key Fields

A network flow is identified as a unidirectional stream of packets between a given source and destination—both are defined by a network-layer IP address and by transport-layer source and destination port numbers. Specifically, a flow is identified as the combination of the following key fields:

- · Source IP address
- Destination IP address
- Source port number
- Destination port number
- Layer 3 protocol type
- Type of service (ToS)
- · Input logical interface

These seven key fields define a unique flow. If a packet has one key field different from another packet, it is considered to belong to another flow. A flow might contain other accounting fields (such as the AS number in the NetFlow export Version 5 flow format) that depend on the export record version that you configure. Flows are stored in the NetFlow cache.

NetFlow Cache Management and Data Export

The key components of NetFlow are the NetFlow cache or data source that stores IP flow information, and the NetFlow export or transport mechanism that sends NetFlow data to a network management collector, such as the NetFlow Collection Engine. NetFlow operates by creating a NetFlow cache entry (a flow record) for each active flow. A flow record is maintained within the NetFlow cache for each active flows. Each flow record in the NetFlow cache contains fields that can later be exported to a collection device, such as the NetFlow Collection Engine.

NetFlow is very efficient, the amount of export data being about 1.5 percent of the switched traffic in the router. NetFlow accounts for every packet (non-sampled mode) and provides a highly condensed and detailed view of all network traffic that entered the router or switch.

The key to NetFlow-enabled switching scalability and performance is highly intelligent flow cache management, especially for densely populated and busy edge routers handling large numbers of concurrent, short duration flows. The NetFlow cache management software contains a highly sophisticated set of algorithms for efficiently determining if a packet is part of an existing flow or should generate a new flow cache entry. The algorithms are also capable of dynamically updating per-flow accounting measurements residing in the NetFlow cache, and cache aging/flow expiration determination.

Rules for expiring NetFlow cache entries include:

- Flows which have been idle for a specified time are expired and removed from the cache.
- Long lived flows are expired and removed from the cache. (Flows are not allowed to live more than 30 minutes by default; the underlying packet conversation remains undisturbed.)

- As the cache becomes full a number of heuristics are applied to aggressively age groups of flows simultaneously.
- TCP connections which have reached the end of byte stream (FIN) or which have been reset (RST) are expired.

Expired flows are grouped together into "NetFlow export" datagrams for export from the NetFlow-enabled device. NetFlow export datagrams can consist of up to 30 flow records for Version 5 or Version 9 flow export. NetFlow functionality is configured on a per-interface basis. To configure NetFlow export capabilities, you need to specify the IP address and application port number of the Cisco NetFlow or third-party flow collector. The flow collector is a device that provides NetFlow export data filtering and aggregation capabilities. Figure 1 shows an example of NetFlow data export from the main and aggregation caches to a collector.

Direction of traffic CE₁ NetFlow enabled Core network on ingress interface UDP export of aggregated flows from aggregation caches on the PE router to collector Uses export Versions 8 and 9 User Data Protocol (UDP) export of nonaggregated flows from the main cache of the PE router to collector Uses export Version 5 and 9 NetFlow Workstation collector

Figure 1 NetFlow Data Export from the Main and Aggregation Caches

NetFlow Export Format Versions 9, 8, 5, and 1

Overview

NetFlow exports data in User Datagram Protocol (UDP) datagrams in one of the following formats: Version 9, Version 8, Version 7, Version 5, or Version 1.

• Version 9—A flexible and extensible format, which provides the versatility needed for support of new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, Multiprotocol Label Switching (MPLS), and Border Gateway Protocol (BGP) next hop. Version 9 export format enables you to use the same version for main and aggregation caches, and the format is extendable, so you can use the same export format with future features.

- Version 8—A format added to support data export from aggregation caches. Export datagrams
 contain a subset of the usual Version 5 export data, which is valid for the particular aggregation
 cache scheme.
- Version 5—A later enhanced version that adds BGP autonomous system (AS) information and flow sequence numbers. (Versions 2 through 4 were not released.) This is the most commonly used format.
- Version 1, the initially released export format, is rarely used today. Do not use the Version 1 export format unless the legacy collection system you are using requires it. Use either the Version 9 export format or the Version 5 export format.

Details

The following sections provide more detailed information on NetFlow Data Export Formats:

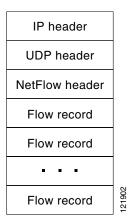
- NetFlow Export Version Formats, page 6
- NetFlow Export Packet Header Format, page 7
- NetFlow Flow Record and Export Format Content Information, page 9
- NetFlow Data Export Format Selection, page 12
- NetFlow Version 9 Data Export Format, page 12
- NetFlow Version 8 Data Export Format, page 13
- NetFlow Version 5 Data Export Format, page 14
- NetFlow Version 1 Data Export Format, page 16

NetFlow Export Version Formats

For all export versions, the NetFlow export datagram consists of a header and a sequence of flow records. The header contains information such as sequence number, record count, and system uptime. The flow record contains flow information, for example IP addresses, ports, and routing information.

NetFlow Version 9 export format is the newest NetFlow export format. The distinguishing feature of the NetFlow Version 9 export format is that it is template based. Templates make the record format extensible. This feature allows future enhancements to NetFlow without requiring concurrent changes to the basic flow-record format.

The use of templates with the NetFlow Version 9 export format provides several other key benefits:


- You can export almost any information from a router or switch including Layer 2 through 7 information, routing information, IP Version 6 (IPv6), IP Version 4 (IPv4), multicast, and Multiprotocol Label Switching (MPLS) information. This new information allows new applications for export data and new views of network behavior.
- Third-party business partners who produce applications that provide collector or display services for NetFlow are not required to recompile their applications each time a new NetFlow export field is added. Instead, they might be able to use an external data file that documents the known template formats.
- New features can be added to NetFlow more quickly, without breaking current implementations.
- NetFlow is "future-proofed" against new or developing protocols, because the Version 9 export format can be adapted to provide support for them and for other non-NetFlow-based approaches to data collection.

The work of the Internet Engineering Task Force (IETF) IP Information Export (IPFIX) Working Group (WG) and the IETF Pack Sampling (PSAMP) WG are based on the NetFlow Version 9 export format.

The Version 1 export format was the original format supported in the initial Cisco IOS software releases containing NetFlow functionality and is rarely used today. The Version 5 export format is a later enhancement that adds Border Gateway Protocol (BGP) autonomous system information and flow sequence numbers. Versions 2 through 4 and Version 6 export formats were either not released or are not supported. Version 8 export format is the NetFlow export format to use when you enable router-based NetFlow aggregation on Cisco IOS router platforms.

Figure 2 shows a typical datagram used for NetFlow fixed format export Versions 1, 5, 7, and 8.

Figure 2 Typical Datagram for NetFlow Fixed Format Export Versions 1, 5, 7, 8

NetFlow Export Packet Header Format

In all five export versions, the datagram consists of a *header* and one or more flow records. The first field of the header contains the version number of the export datagram. Typically, a receiving application that accepts any of the format versions allocates a buffer large enough for the largest possible datagram from any of the format versions and then uses the header to determine how to interpret the datagram. The second field in the header contains the number of records in the datagram (indicating the number of expired flows represented by this datagram). Datagram headers for NetFlow Export Versions 5, 8, and 9 also include a "sequence number" field used by NetFlow collectors to check for lost datagrams.

The NetFlow Version 9 export packet header format is shown in Figure 3.

Figure 3 NetFlow Version 9 Export Packet Header Format

Version 9 2 3 4 5 6 7 8 9 4 5 8 5 7 bits Version Count System Uptime **UNIX Seconds** Package Sequence Source ID

Table 1 lists the NetFlow Version 9 export packet header field names and descriptions.

Table 1 NetFlow Version 9 Export Packet Header Field Names and Descriptions

Field Name	Description
Version	The version of NetFlow records exported in this packet; for Version 9, this value is 0x0009.
Count	Number of FlowSet records (both template and data) contained within this packet.
System Uptime	Time in milliseconds since this device was first booted.
UNIX Seconds	Seconds since 0000 Coordinated Universal Time (UTC) 1970.
Package Sequence	Incremental sequence counter of all export packets sent by this export device; this value is cumulative, and it can be used to find out whether any export packets have been missed.
	This is a change from the NetFlow Version 5 and Version 8 headers, where this number represented "total flows."
Source ID	The Source ID field is a 32-bit value that is used to guarantee uniqueness for each flow exported from a particular device. (The Source ID field is the equivalent of the engine type and engine ID fields found in the NetFlow Version 5 and Version 8 headers.) The format of this field is vendor specific. In Cisco's implementation, the first two bytes are reserved for future expansion, and are always zero. Byte 3 provides uniqueness with respect to the routing engine on the exporting device. Byte 4 provides uniqueness with respect to the particular line card or Versatile Interface Processor on the exporting device. Collector devices should use the combination of the source IP address and the Source ID field to associate an incoming NetFlow export packet with a unique instance of NetFlow on a particular device.

NetFlow Flow Record and Export Format Content Information

This section gives details about the Cisco export format flow record. Table 2 indicates which flow record format fields are available for Version 5, and 9. (Y indicates that the field is available.)

Table 2 NetFlow Flow Record Format Fields for Format Versions 5, and 9

Field	Version 5	Version 9
source IP address	Y	Y
destination IP address	Y	Y
source TCP/UDP application port	Y	Y
destination TCP/UDP application port	Y	Y
next hop router IP address	Y	Y
input physical interface index	Y	Y
output physical interface index	Y	Y
packet count for this flow	Y	Y
byte count for this flow	Y	Y
start of flow timestamp	Y	Y
end of flow timestamp	Y	Y
IP Protocol (for example, TCP=6; UDP=17)	Y	Y
Type of Service (ToS) byte	Y	Y
TCP Flags (cumulative OR of TCP flags)	Y	Y
source AS number	Y	Y
destination AS number	Y	Y
source subnet mask	Y	Y
destination subnet mask	Y	Y
flags (indicates, among other things, which flows are invalid)	Y	Y
Other flow fields ¹	N	Y

^{1.} For a list of other flow fields available in Version 9 export format, see Figure 5.

Figure 4 is an example of the NetFlow Version 5 export record format, including the contents and description of byte locations. The terms in **bold** indicate values that were added for the Version 5 format.

Figure 4 NetFlow Version 5 Export Record Format

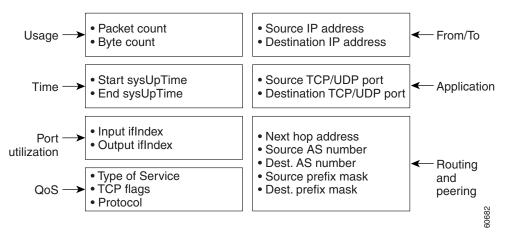


Table 3 shows the field names and descriptions for the NetFlow Version 5 export record format.

Table 3 NetFlow Version 5 Export Record Format Field Names and Descriptions

Content	Bytes	Descriptions
srcaddr	0-3	Source IP address
dstaddr	4–7	Destination IP address
nexthop	8-11	Next hop router's IP address
input	12–13	Ingress interface SNMP ifIndex
output	14–15	Egress interface SNMP ifIndex
dPkts	16–19	Packets in the flow
dOctets	20–23	Octets (bytes) in the flow
first	24–27	SysUptime at start of the flow
last	28-31	SysUptime at the time the last packet of the flow was received
srcport	32–33	Layer 4 source port number or equivalent
dstport	34–35	Layer 4 destination port number or equivalent
pad1	36	Unused (zero) byte
tcp_flags	37	Cumulative OR of TCP flags
prot	38	Layer 4 protocol (for example, 6=TCP, 17=UDP)
tos	39	IP type-of-service byte
src_as	40–41	Autonomous system number of the source, either origin or peer
dst_as	42–43	Autonomous system number of the destination, either origin or peer
src_mask	44	Source address prefix mask bits
dst_mask	45	Destination address prefix mask bits
pad2	46–47	PAD 2 is unused (zero) bytes

Figure 5 shows a typical flow record for the Version 9 export format. The NetFlow Version 9 export record format is different from the traditional NetFlow fixed format export record. In NetFlow Version 9, a template describes the NetFlow data and the flow set contains the actual data. This allows for flexible export. Detailed information about the fields currently in Version 9 and export format architecture are available in the *NetFlow Version 9 Flow-Record Format* document.

Header NetFlow Version 9 Header: 32 bits -> Version 9 Count = 4 (FlowSets) First Template FlowSet Template Record System Uptime **UNIX Seconds** First Record FlowSet (Template ID 256) Package Sequence First data Record Source ID Second Data Record Second Template Flow Set ← Template FlowSet 16 bits → ← Data FlowSet: 32 bits → Template Record FlowSet ID = 0 FlowSet Length = ID = 256 64 bytes Template Record Length = 28 bytes 192.168.1.12 Second Record FlowSet Template ID = 25610.5.12.254 (Template ID 257) Field Count = 5 192.168.1.1 Data Record IPv4_SRCADDR (0x0008) Data Record 5009 Length = 45344365 Data Record IPv4_DSTADDR (0x000C) 192.168.1.27 Data Record Length = 410.5.12.23 IPv4_NEXT_HOP (0x000E) 192.168.1.1 Length = 4748 PKTS_32 (0x0002) 388934 Length = 4192.168.1.56 BYTES_32 (0x0001) 10.5.12.65 Length = 4192.168.1.1 5 6534

Figure 5 NetFlow Version 9 Export Packet Example

For all export versions, you specify a destination where NetFlow data export packets are sent, such as the workstation running NetFlow Collection Engine, either when the number of recently expired flows reaches a predetermined maximum, or every second—whichever occurs first. For a Version 1 datagram, up to 24 flows can be sent in a single UDP datagram of approximately 1200 bytes; for a Version 5 datagram, up to 30 flows can be sent in a single UDP datagram of approximately 1500 bytes.

For detailed information on the flow record formats, data types, and export data fields for Versions 1, 7, and 9 and platform-specific information when applicable, see Appendix 2 in the *NetFlow Solutions Service Guide*.

NetFlow Data Export Format Selection

NetFlow exports data in UDP datagrams in export format Version 9, 8, 5, or 1. Table 4 describes situations when you might select a particular NetFlow export format.

Table 4 When to Select a Particular NetFlow Export Format

Export Format	Select When
Version 9	You need to export data from various technologies, such as Multicast, DoS, IPv6, BGP next hop, and so on. This format accommodates new NetFlow-supported technologies such as Multicast, MPLS, and BGP next hop.
	The Version 9 export format supports export from the main cache and from aggregation caches.
Version 8	You need to export data from aggregation caches. Version 8 export format is available only for export from aggregation caches.
Version 5	You need to export data from the NetFlow main cache, and you are not planning to support new features.
	Version 5 export format does not support export from aggregation caches.
Version 1	You need to export data to a legacy collection system that requires Version 1 export format. Otherwise, do not use Version 1 export format. Use Version 9 or Version 5 export format.

NetFlow Version 9 Data Export Format

The NetFlow Version 9 Export Format feature was introduced in Cisco IOS Release 12.0(24)S and was integrated into Cisco IOS Release 12.3(1) and Cisco IOS Release 12.2(18)S.

NetFlow Version 9 data export supports CEF switching, dCEF switching, and fast switching.

NetFlow Version 9 is a flexible and extensible means for transferring NetFlow records from a network node to a collector. NetFlow Version 9 has definable record types and is self-describing for easier NetFlow Collection Engine configuration.

Using Version 9 export, you define new formats on the router that you can send to the NetFlow Collection Engine (formerly called NetFlow FlowCollector) at set intervals. You enable the features that you want, and the field values corresponding to those features are sent to the NetFlow Collection Engine.

Third-party business partners who produce applications that provide NetFlow Collection Engine or display services for NetFlow do not need to recompile their applications each time a new NetFlow technology is added. Instead, with the NetFlow v9 Export Format feature, they can use an external data file that documents the known template formats and field types.

In NetFlow Version 9

- Record formats are defined by templates.
- Template descriptions are communicated from the router to the NetFlow Collection Engine.
- Flow records are sent from the router to the NetFlow Collection Engine with minimal template information so that the NetFlow Collection Engine can relate the records to the appropriate template.
- Version 9 is independent of the underlying transport (UDP, TCP, SCTP, and so on).

NetFlow Version 9 Template-Based Flow Record Format

The main feature of NetFlow Version 9 export format is that it is *template based*. A template describes a NetFlow record format and attributes of the fields (such as type and length) within the record. The router assigns each template an ID, which is communicated to the NetFlow Collection Engine along with the template description. The template ID is used for all further communication from the router to the NetFlow Collection Engine.

NetFlow Version 9 Export Flow Records

The basic output of NetFlow is a *flow record*. In NetFlow Version 9 export format, a flow record follows the same sequence of fields as found in the template definition. The template to which NetFlow flow records belong is determined by the prefixing of the template ID to the group of NetFlow flow records that belong to a template. For a complete discussion of existing NetFlow flow-record formats, see the *NetFlow Services Solutions Guide*.

NetFlow Version 9 Export Packet

In NetFlow Version 9, an export packet consists of the packet header and flowsets. The packet header identifies the new version and provides other information. See Figure 3 on page 8 for Version 9 export packet header details. Flowsets are of two types: template flowsets and data flowsets. The template flowset describes the fields that will be in the data flowsets (or flow records). Each data flowset contains the values or statistics of one or more flows with the same template ID. When the NetFlow Collection Engine receives a template flowset, it stores the flowset and export source address so that subsequent data flowsets that match the flowset ID and source combination are parsed according to the field definitions in the template flowset. Version 9 supports NetFlow Collection Engine Version 4.0. For an example of a Version 9 export packet, see Figure 5 on page 11.

NetFlow Version 8 Data Export Format

The Version 8 data export format is the NetFlow export format used when the router-based NetFlow aggregation feature is enabled on Cisco IOS router platforms. The Version 8 format allows for export datagrams to contain a subset of the Version 5 export data that is based on the configured aggregation cache scheme. For example, a certain subset of the Version 5 export data is exported for the destination prefix aggregation scheme, and a different subset is exported for the source-prefix aggregation scheme.

The Version 8 export format was introduced in Cisco IOS 12.0(3)T for the Cisco IOS NetFlow Aggregation feature. An additional six aggregation schemes that also use Version 8 format were defined for the NetFlow ToS-Based Router Aggregation feature introduced in Cisco IOS 12.0(15)S and integrated into Cisco IOS Releases 12.2(4)T and 12.2(14)S. Refer to the "Configuring NetFlow Aggregation Caches" module for information on configuring Version 8 data export for aggregation caches.

The Version 8 datagram consists of a header with the version number (which is 8) and time stamp information, followed by one or more records corresponding to individual entries in the NetFlow cache.

Version 8

Figure 6 displays the NetFlow Version 8 export packet header format.

Figure 6 NetFlow Version 8 Export Packet Header Format

version 8																					
1 2 3 4 5 6 7 8	9 10	11 12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 bits
Version		•	•			Coi	unt			•										•	
System Uptime																					
UNIX Seconds																					
UNIX NanoSeconds																					
Flow Sequence Number																					
Engine Type	Engin	ne ID					Ą	ggre	gatio	n					Agg	Ver	sion				
Sampling Interval							Re	eser	ved												

Table 5 lists the NetFlow Version 8 export packet header field names and definitions.

Table 5 NetFlow Version 8 Export Packet Header Field Names and Descriptions

Field Name	Description
Version	Flow export format version number. In this case 8.
Count	Number of export records in the datagram.
System Uptime	Number of milliseconds since the router last booted.
UNIX Seconds	Number of seconds since 0000 UTC 1970.
UNIX NanoSeconds	Number of residual nanoseconds since 0000 UTC 1970.
Flow Sequence Number	Sequence counter of total flows sent for this export stream.
Engine Type	The type of switching engine. $RP = 0$ and $LC = 1$.
Engine ID	Slot number of the NetFlow engine.
Aggregation	Type of aggregation scheme being used.
Agg Version	Aggregation subformat version number. The current value is "2."
Sampling Interval	Interval value used if Sampled NetFlow is configured.
Reserved	Zero field.

NetFlow Version 5 Data Export Format

The Version 5 data export format adds support for Border Gateway Protocol (BGP) autonomous system information and flow sequence numbers.

Because NetFlow uses UDP to send export datagrams, datagrams can be lost. The Version 5 header format contains a flow sequence number to find out whether flow export information has been lost. The sequence number is equal to the sequence number of the previous datagram plus the number of flows in the previous datagram. After receiving a new datagram, the receiving application can subtract the expected sequence number from the sequence number in the header to get the number of missed flows.

All fields in Version 5 export format are in network byte order. Figure 7 shows the NetFlow Version 5 export packet header format.

Figure 7 NetFlow Version 5 Export Packet Header Format

Version 5																								
1 2 3 4 5 6	7 8		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 bits
Version									Co	unt														
System Uptime									•															
UNIX Seconds																								
UNIX NanoSeconds	3																							
Flow Sequence Nun	nber																							
Reserved																								
Engine Type	ı	Eng	ine	ID																				

Table 6 lists the NetFlow Version 5 export packet header field names and descriptions.

Table 6 NetFlow Version 5 Export Packet Header Field Names and Descriptions

Field	Description
Version	Version of NetFlow records exported in this packet.
Count	Number of FlowSet records (both template and data) contained within this packet.
System Uptime	Time in milliseconds since this device was first booted.
UNIX Seconds	Seconds since 0000 UTC 1970.
UNIX NanoSeconds	Residual nanoseconds since 0000 UTC 1970.
Flow Sequence Number	Sequence number of total flows seen.
Reserved	Zero field.
Engine Type	Type of flow switching engine: 0 for RP, 1 for VIP/LC.
Engine ID	VIP or LC slot number of the flow switching engine.

Table 7 describes the Version 5 export format header network byte order.

Table 7 NetFlow Version 5 Export Format Header Network Byte Order

Bytes	Content	Description
0 to 3	Version and count	NetFlow export format version number and number of flows exported in this packet (1 to 30)
4 to 7	SysUptime	Current time (in milliseconds) since the router booted
8 to 11	unix_secs	Seconds since 0000 UTC 1970
12 to 15	unix_nsecs	Residual nanoseconds since 0000 UTC 1970
16 to 19	flow_sequence	Sequence counter of total flows seen
20 to 23	Reserved	Unused (zero) bytes

Table 8 lists the byte definitions for the Version 5 flow record format.

Table 8 Version 5 Flow Record Format

Bytes	Content	Description
0 to 3	srcaddr	Source IP address.
4 to 7	dstaddr	Destination IP address.
8 to 11	nexthop	IP address of the next hop router.
12 to 15	input and output	SNMP index of the input and output interfaces.
16 to 19	dPkts	Packets in the flow.
20 to 23	dOctets	Total number of Layer 3 bytes in the flow's packets.
24 to 27	First	SysUptime at start of flow.
28 to 31	Last	SysUptime at the time the last packet of flow was received.
32 to 35	srcport and dstport	TCP/UDP source and destination port number or equivalent.
36 to 39	pad1, tcp_flags, prot, and tos	Unused (zero) byte, cumulative OR of TCP flags, IP protocol (for example, 6 = TCP, 17 = UDP), and IP ToS.
40 to 43	src_as and dst_as	Autonomous system of the source and destination, either origin or peer.
44 to 47	src_mask, dst_mask, and pad2	Source and destination address prefix mask bits. Pad 2 is unused (zero) bytes.

NetFlow Version 1 Data Export Format

The NetFlow Version 1 data export format was the format supported in the initial Cisco IOS software releases containing NetFlow functionality. It is rarely used today. Do not use the Version 1 export format unless the legacy collection system you are using requires it. Use either the Version 9 export format or the Version 5 export format.

Figure 8 shows the NetFlow Version 1 export packet header format.

Figure 8 Version 1 Export Packet Header Format

Version 1

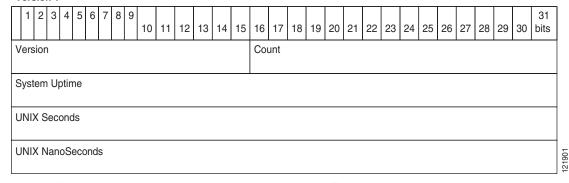


Table 9 lists the NetFlow Version 1 export packet header field names and descriptions.

Table 9 NetFlow Version 1 Packet Header Field Names and Descriptions

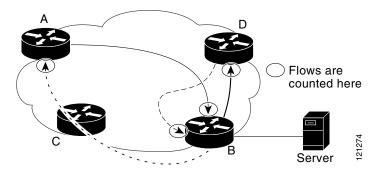
Field Name	Description
Version	Version of NetFlow records exported in this packet.
Count	Number of FlowSet records (both template and data) contained within this packet.
System Uptime	Time in milliseconds since this device was first booted.
UNIX Seconds	Seconds since 0000 UTC 1970.
UNIX NanoSeconds	Residual nanoseconds since 0000 UTC 1970.

Egress NetFlow Accounting Benefits: NetFlow Accounting Simplified

The Egress NetFlow Accounting feature can simplify NetFlow configuration. The following example shows how.

In Figure 9 and Figure 10 both incoming and outgoing (ingress and egress) flow statistics are required for the server. The server is attached to Router B. The "cloud" in the figure represents the core of the network and includes Multiprotocol Label Switching (MPLS) Virtual Private Networks (VPNs).

All traffic denoted by the arrows must be accounted for. The solid arrows represent IP traffic and the dotted arrows represent MPLS VPNs.


Figure 9 shows how the flow traffic was tracked before the introduction of the Egress NetFlow Accounting feature. Figure 10 shows how the flow traffic is tracked after the introduction of the Egress NetFlow Accounting feature. The Egress NetFlow Accounting feature simplifies configuration tasks and makes it easier for you to collect and track incoming and outgoing flow statistics for the server in this example.

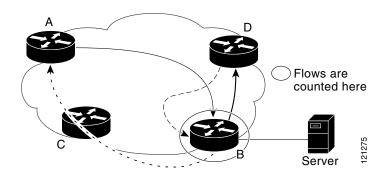
Since only ingress flows could be tracked before the Egress NetFlow Accounting feature was introduced, the following NetFlow configurations had to be implemented for the tracking of ingress and egress flows from Router B:

- Enable NetFlow on an interface on Router B to track ingress IP traffic from Router A to Router B.
- Enable NetFlow on an interface on Router D to track ingress IP traffic from Router B to Router D.

- Enable NetFlow on an interface on Router A to track ingress traffic from the MPLS VPN from Router B to Router A.
- Enable NetFlow on an interface on Router B to track ingress traffic from the MPLS VPN from Router D to Router B.

Figure 9 Ingress-Only NetFlow Example

A configuration such as the one used in Figure 9 requires that NetFlow statistics from three separate routers be added together to obtain the flow statistics for the server.


In comparison, the example in Figure 10 shows NetFlow, the Egress NetFlow Accounting feature, and the MPLS Egress NetFlow Accounting feature being used to capture ingress and egress flow statistics for Router B, thus obtaining the required flow statistics for the server.

In Figure 10, the following NetFlow configurations are applied to Router B:

- Enable NetFlow on an interface on Router B to track ingress IP traffic from Router A to Router B.
- Enable the Egress NetFlow Accounting feature on an interface on Router B to track egress IP traffic from Router B to Router D.
- Enable NetFlow an interface on Router B to track ingress traffic from the MPLS VPN from Router B to Router D.
- Enable NetFlow on an interface on Router B to track ingress traffic from the MPLS VPN from Router B to Router A.

After NetFlow is configured on Router B, you can display all NetFlow statistics for the server by entering the **show ip cache flow** command or the **show ip cache verbose flow** command for Router B.

Figure 10 Egress NetFlow Accounting Example

NetFlow Subinterface Support Benefits: Fine-Tuning Your Data Collection

You can configure NetFlow on a per-subinterface basis. If your network contains thousands of subinterfaces and you want to collect export records from only a few subinterfaces, you can do that. The result is lower bandwidth requirements for NetFlow data export and reduced platform requirements for NetFlow data-collection devices.

The configuration of NetFlow on selected subinterfaces provides the following benefits:

- Reduced bandwidth requirement between routing devices and NetFlow management workstations.
- Reduced NetFlow workstation requirements; the number of flows sent to the workstation for processing is reduced.

NetFlow Multiple Export Destinations: Benefits

The NetFlow Multiple Export Destinations feature enables configuration of multiple destinations for the NetFlow data. With this feature enabled, two identical streams of NetFlow data are sent to the destination host. Currently, the maximum number of export destinations allowed is two.

The NetFlow Multiple Export Destinations feature improves the chances of receiving complete NetFlow data because it provides redundant streams of data. Because the same export data is sent to more than one NetFlow collector, fewer packets are lost.

NetFlow on a Distributed VIP Interface

On a Cisco 7500 series router with an Route Switch Processor (RSP) and with VIP controllers, the VIP hardware can be configured to switch packets received by the VIP interfaces with no per-packet intervention on the part of the RSP. This process is called *distributed switching*. When VIP distributed switching is enabled, the input VIP interface switches IP packets instead of forwarding them to the RSP for switching. Distributed switching decreases the demand on the RSP. VIP interfaces with distributed switching enabled can be configured for NetFlow.

How to Configure NetFlow and NetFlow Data Export

This section contains instructions for configuring NetFlow to capture and export network traffic data. Perform the following tasks to configure NetFlow to capture and export network traffic data:

- Configuring NetFlow, page 20 (required)
- Verifing that NetFlow is Operational and View NetFlow Statistics, page 21 (optional)
- Configuring NetFlow Data Export Using the Version 9 Export Format, page 23 (optional)
- Verifying that NetFlow Data Export is Operational, page 26 (optional)
- Clearing NetFlow Statistics on the Router, page 27 (optional)
- Customizing the NetFlow Main Cache Parameters, page 28 (optional)

Configuring NetFlow

Perform the steps in this required task to enable NetFlow.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. **interface** *interface-type interface-number*
- 4. ip flow {ingress | egress}
- 5. exit
- **6.** Repeat Steps 3 through 5 to enable NetFlow on other interfaces
- 7. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	<pre>interface interface-type interface-number</pre>	(Required) Specifies the interface that you want to enable NetFlow on and enters interface configuration mode.
	<pre>Example: Router(config)# interface ethernet 0/0</pre>	
Step 4	ip flow {ingress egress}	(Required) Enables NetFlow on the interface.
	Example:	• ingress —captures traffic that is being received by the interface
	Router(config-if)# ip flow ingress Or	• egress —captures traffic that is being transmitted by the interface
	<pre>Example: Router(config-if)# ip flow egress</pre>	This is the Egress NetFlow Accounting feature that is described in the "Egress NetFlow Accounting Benefits: NetFlow Accounting Simplified" section on page 17.
Step 5	exit	(Optional) Exits interface configuration mode and returns to global configuration mode.
	Example: Router(config-if)# exit	Note You only need to use this command if you want to enable NetFlow on another interface.

	Command or Action	Purpose
Step 6	Repeat Steps 3 through 5 to enable NetFlow on other interfaces	(Optional) —
Step 7	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

Verifing that NetFlow is Operational and View NetFlow Statistics

Perform the steps in this optional task to verify that NetFlow is operational and to view the NetFlow statistics.

SUMMARY STEPS

- 1. show ip flow interface
- 2. show ip cache flow
- 3. show ip cache verbose flow

DETAILED STEPS

Step 1 show ip flow interface

Use this command to display the NetFlow configuration for an interface. The following is sample output from this command:

```
Router# show ip flow interface
Ethernet0/0
ip flow ingress
Router#
```

Step 2 show ip cache flow

Use this command to verify that NetFlow is operational, and to display a summary of the NetFlow statistics. The following is sample output from this command:

```
Router# show ip cache flow
IP packet size distribution (1103746 total packets):
  1-32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
  512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
  IP Flow Switching Cache, 278544 bytes
 35 active, 4061 inactive, 980 added
 2921778 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 21640 bytes
 0 active, 1024 inactive, 0 added, 0 added to flow
 O alloc failures, O force free
 1 chunk, 1 chunk added
 last clearing of statistics never
             Total
                    Flows Packets Bytes Packets Active(Sec) Idle(Sec)
```

	Flows	/Sec	/Flow	/Pkt	/Sec	/ E	low	/ I	-low
TCP-FTP	108	0.0	1133	40	2.4	179	99.6		0.9
TCP-FTPD	108	0.0	1133	40	2.4	179	99.6		0.9
TCP-WWW	54	0.0	1133	40	1.2	179	99.6		0.8
TCP-SMTP	54	0.0	1133	40	1.2	179	99.6		0.8
TCP-BGP	27	0.0	1133	40	0.6	179	99.6		0.7
TCP-NNTP	27	0.0	1133	40	0.6	179	99.6		0.7
TCP-other	297	0.0	1133	40	6.8	179	99.7		0.8
UDP-TFTP	27	0.0	1133	28	0.6	179	99.6		1.0
UDP-other	108	0.0	1417	28	3.1	179	99.6		0.9
ICMP	135	0.0	1133	427	3.1	179	99.6		0.8
Total:	945	0.0	1166	91	22.4	179	99.6		0.8
SrcIf	SrcIPaddress	Dst:			address		SrcP		Pkts
Et0/0	192.168.67.6		/0.1		6.10.200		0000		51
Et0/0	10.10.18.1	Nul:			6.11.5		0043		51
Et0/0	10.10.18.1	Nul:	1		6.11.5		0045		51
Et0/0	10.234.53.1		/0.1		6.10.2		0000		51
Et0/0	10.10.19.1	Nul:	1	172.1	6.11.6	11	0044	0044	51
Et0/0	10.10.19.1	Nul:	1	172.1	6.11.6	11	00A2	00A2	51
Et0/0	192.168.87.20	0 Et1	/0.1	172.1	6.10.2		0014		50
Et0/0	192.168.87.20	0 Et1	/0.1	172.1	6.10.2	06	0015	0015	52
•									
•									
•	450 46 4 04			450.4	- 10 10				
Et0/0	172.16.1.84		/0.1		6.10.19		0087		50
Et0/0	172.16.1.84		/0.1		6.10.19		0050		51
Et0/0	172.16.1.85		/0.1		6.10.20		0089		49
Et0/0	172.16.1.85		/0.1		6.10.20		0050		50
Et0/0	10.251.10.1		/0.1		6.10.2		0000		51
Et0/0	10.162.37.71	Nul:	Ţ	172.1	6.11.3	06	027C	027C	49
Router#									

Step 3 show ip cache verbose flow

Router# show ip cache verbose flow

Use this command to verify that NetFlow is operational and to display a detailed summary of the NetFlow statistics. The following is sample output from this command:

```
IP packet size distribution (1130681 total packets):
  1-32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
  512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
  IP Flow Switching Cache, 278544 bytes
 35 active, 4061 inactive, 980 added
 2992518 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 21640 bytes
 0 active, 1024 inactive, 0 added, 0 added to flow
 0 alloc failures, 0 force free
 1 chunk, 1 chunk added
 last clearing of statistics never
Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)
                     /Sec /Flow /Pkt /Sec /Flow /Flow
              Flows
-----
                      0.0
                                            2.4
              108
                                                              0.9
                              1133 40
                                                    1799.6
TCP-FTP
                108
                        0.0
                                1133
                                       40
                                                    1799.6
                                                                0.9
TCP-FTPD
                                             1.2
TCP-WWW
                54
                        0.0
                                1133
                                       40
                                                    1799.6
                                                                0.8
                                             1.2
                54
                              1133
                                       40
                                                   1799.6
                                                               0.8

    1133
    40
    1.2

    1133
    40
    0.6
    1799.6

    1133
    40
    0.6
    1799.6

    1133
    40
    6.6
    1799.7

TCP-SMTP
                        0.0
                27
                       0.0
                                                               0.7
TCP-BGP
TCP-NNTP
                27
                      0.0
                                                               0.7
TCP-other
               297
                    0.0
                                                                0.8
```

UDP-TFTP		27	0.0	11	33	28	0.6	1799	.6		1.0
UDP-other	r	108	0.0	14	17	28	3.0	1799	.6		0.9
ICMP		135	0.0	11	33	427	3.0	1799	.6		0.8
Total:		945	0.0	11	66	91	21.9	1799	.6		0.8
SrcIf		SrcIPaddress	Dst:	Ιf		Dst	IPaddress	Pr	TOS	Flg	s Pkts
Port Msk	AS		Port	Msk	AS	Nex	tHop		В	/Pk	Active
Et0/0		192.168.67.6	Et1,	0.1		172	.16.10.200	01	00	10	799
0000 /0	0		0C0	L /0	0	0.0	.0.0			28	1258.1
Et0/0		10.10.18.1	Nul:	L		172	.16.11.5	11	00	10	799
0043 /0	0		0043	3 /0	0	0.0	.0.0			28	1258.0
Et0/0		10.10.18.1	Nul:	L		172	.16.11.5	11	00	10	799
0045 /0	0		0045	5 /0	0	0.0	.0.0			28	1258.0
Et0/0		10.234.53.1	Et1,	0.1		172	.16.10.2	01	00	10	799
0000 /0	0		080	0 / 0	0	0.0	.0.0			28	1258.1
Et0/0		10.10.19.1	Nul:	L		172	.16.11.6	11	00	10	799
0044 /0	0		0044	1 /0	0	0.0	.0.0			28	1258.1
Et0/0		172.16.1.84	Et1,	0.1		172	.16.10.19	06	00	00	799
0087 /0	0		008	7 /0	0	0.0	.0.0			40	1258.1
Et0/0		172.16.1.84	Et1,	0.1		172	.16.10.19	06	00	00	799
0050 /0	0		0050	0 / 0	0	0.0	.0.0			40	1258.0
Et0/0		172.16.1.85	Et1,	0.1		172	.16.10.20	06	00	00	798
0089 /0	0		0089	0 / 9	0	0.0	.0.0			40	1256.5
Et0/0		172.16.1.85	Et1,	0.1		172	.16.10.20	06	00	00	799
0050 /0	0		0050	0 / 0	0	0.0	.0.0			40	1258.0
Et0/0		10.251.10.1	Et1,	0.1		172	.16.10.2	01	00	10	799
0000 /0	0		080	0 / 0	0	0.0	.0.0		1	500	1258.1
Et0/0		10.162.37.71	Nul:	L		172	.16.11.3	06	00	00	798
027C /0	0		0270	C / O	0	0.0	.0.0			40	1256.4
Router#											

Configuring NetFlow Data Export Using the Version 9 Export Format

Perform the steps in this optional task to configure NetFlow Data Export using the Version 9 export format.

This task does not include instructions for configuring Reliable NetFlow Data Export using SCTP. Refer to the "NetFlow Reliable Export With SCTP" module for information about, and instructions for configuring Reliable NetFlow Data Export using SCTP.

This section contains the following subsections:

- Prerequisites, page 23
- SUMMARY STEPS, page 24
- DETAILED STEPS, page 24

Prerequisites

This task does not include the steps for configuring NetFlow. You must configure NetFlow by enabling it on at least one interface in the router in order to export traffic data with NetFlow Data Export. Refer to the "Configuring NetFlow" section on page 20 for information about configuring NetFlow.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. ip flow-export destination** {{*ip-address* | *hostname*} *udp-port*}
- **4.** Repeat Step 3 once to configure an additional export destination
- **5**. **ip flow export source** *interface-type interface-number*
- 6. ip flow-export version 9 [origin-as | peer-as] [bgp-nexthop]
- 7. ip flow-export interface-names
- 8. ip flow-export template refresh-rate packets
- 9. ip flow-export template timeout-rate minutes
- 10. ip flow-export template options export-stats
- 11. ip flow-export template options refresh-rate packets
- 12. ip flow-export template options timeout-rate minutes
- 13. end

DETAILED STEPS

Command		Purpose	
Step 1	enable	(Required) Enters privileged EXEC mode.	
		Enter your password if prompted.	
	Example:		
	Router> enable		
Step 2	configure terminal	(Required) Enters global configuration mode.	
	Example: Router# configure terminal		
Step 3	<pre>ip flow-export destination {{ip-address hostname} udp-port}</pre>	(Required) Specifies the IP address, or hostname of the NetFlow collector, and the UDP port the NetFlow collector is listening on.	
	Example: Router(config)# ip flow-export destination 172.16.10.2 99		
Step 4	Repeat Step 3 once to configure a second NetFlow export destination.	(Optional) You can configure a maximum of two export destinations for NetFlow.	
		This is the NetFlow Multiple Export Destinations feature that is described in the "NetFlow Multiple Export Destinations: Benefits" section on page 19.	
Step 5	<pre>ip flow-export source interface-type interface-number</pre>	(Optional) The IP address from the interface specified is used as the source IP address for the UDP datagrams that are sent by NetFlow data export to the destination host.	
	Example:		
	Router(config)# ip flow-export source ethernet 0/0		

	Command	Purpose	
ep 6	<pre>ip flow-export version 9 [origin-as peer-as] [bgp-nexthop] Example: Router(config)# ip flow-export version 9</pre>	 (Optional) Enables the export of information in NetFlow cache entries. The version 9 keyword specifies that the export packet uses the Version 9 format. 	
ер 7	<pre>ip flow-export interface-names Example: Router(config) # ip flow-export interface-names</pre>	Configures NetFlow data export to include the interface names from the flows when it exports the NetFlow cache entry to a destination system.	
ep 8	<pre>ip flow-export template refresh-rate packets</pre>	(Optional) Enables the export of information in NetFlow cache entries. • The template keyword specifies template-specific	
	<pre>Example: Router(config)# ip flow-export template refresh-rate 15</pre>	 The refresh-rate packets keyword-argument pair specifies the number of packets exported before the templates are resent. You can specify from 1 to 600 packets. The default is 20 packets. 	
ep 9	<pre>ip flow-export template timeout-rate minutes</pre>	(Optional) Enables the export of information in NetFlow cache entries.	
	<pre>Example: Router(config)# ip flow-export template timeout-rate 90</pre>	 The template keyword specifies that the timeout-rate keywapplies to the template. The timeout-rate minutes keyword-argument pair specifies time elapsed before the templates are resent. You can specified from 1 to 3600 minutes. The default is 30 minutes. 	

	Command	Purpose	
Step 10	ip flow-export template options export-stats	Optional) Enables the export of information in NetFlow cache entries.	
	<pre>Example: Router(config) # ip flow-export template</pre>	• The template keyword specifies template-specific configurations.	
	options export-stats	• The options keyword specifies template options.	
		• The export-stats keyword specifies that the export statistics include the total number of flows exported and the total number of packets exported.	
Step 11	<pre>ip flow-export template options refresh-rate packets</pre>	(Optional) Enables the export of information in NetFlow cache entries.	
	<pre>Example: Router(config) # ip flow-export template options refresh-rate 25</pre>	• The template keyword specifies template-specific configurations.	
		• The options keyword specifies template options.	
		• The refresh-rate <i>packets</i> keyword-argument pair specifies the number of packets exported before the templates are resent. You can specify from 1 to 600 packets. The default is 20 packets.	
Step 12	<pre>ip flow-export template options timeout-rate minutes</pre>	(Optional) Enables the export of information in NetFlow cache entries.	
	Example:	• The template keyword specifies template-specific configurations.	
	Router(config)# ip flow-export template options timeout-rate 120	• The options keyword specifies template options.	
		• The timeout-rate <i>minutes</i> keyword-argument pair specifies the time elapsed before the templates are resent. You can specify from 1 to 3600 minutes. The default is 30 minutes.	
Step 13	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.	
	Example:		
	Router(config)# end		

Verifying that NetFlow Data Export is Operational

Perform the steps in this optional task to verify that NetFlow data export is operational and how to view the statistics for NetFlow data export.

SUMMARY STEPS

- 1. show ip flow export
- 2. show ip flow export template

DETAILED STEPS

Step 1 show ip flow export

Use this command to display the statistics for the NetFlow data export, including statistics for the main cache and for all other enabled caches. The following is sample output from this command:

Router# show ip flow export Flow export v9 is enabled for main cache Exporting flows to 172.16.10.2 (99) Exporting using source interface Ethernet0/0 Version 9 flow records 0 flows exported in 0 udp datagrams 0 flows failed due to lack of export packet 0 export packets were sent up to process level 0 export packets were dropped due to no fib 0 export packets were dropped due to adjacency issues 0 export packets were dropped due to fragmentation failures 0 export packets were dropped due to encapsulation fixup failures Router#

Step 2 show ip flow export template

Use this command to display the statistics for the NetFlow data export (such as the template timeout rate and the refresh rate) for the template-specific configurations. The following is sample output from this command:

```
Router# show ip flow export template
   Template Options Flag = 1
   Total number of Templates added = 1
   Total active Templates = 1
   Flow Templates active = 0
   Flow Templates added = 0
   Option Templates active = 1
   Option Templates added = 1
   Template ager polls = 0
   Option Template ager polls = 140
Main cache version 9 export is enabled
Template export information
   Template timeout = 90
   Template refresh rate = 15
 Option export information
   Option timeout = 120
   Option refresh rate = 25
Router#
```

Clearing NetFlow Statistics on the Router

Perform the steps in this optional task to clear NetFlow statistics on the router.

SUMMARY STEPS

- 1. enable
- 1. clear ip flow stats

DETAILED STEPS

Step 1 enable

Use this enter privileged EXEC mode on the router:

Router> enable Router#

Step 2 clear ip flow stats

Use this command to clear the NetFlow statistics on the router. For example:

Router# clear ip flow stats

Customizing the NetFlow Main Cache Parameters

NetFlow operates by creating a NetFlow cache entry (a flow record) for each active flow. A flow record is maintained within the NetFlow cache for all active flows. Each flow record in the NetFlow cache contains fields that can later be exported to a collection device, such as the NetFlow Collection Engine. NetFlow enables the accumulation of data on flows. Each flow is identified by unique characteristics such as IP address, interface, application, and type of service (ToS).

To customize the parameters for the main NetFlow cache, perform the steps this optional task. This section contains the following subsections:

- NetFlow Cache Entry Management on a Routing Device, page 28
- NetFlow Cache Size, page 29
- Restrictions, page 29
- SUMMARY STEPS, page 29
- DETAILED STEPS, page 30

NetFlow Cache Entry Management on a Routing Device

The routing device checks the NetFlow cache once per second and causes the flow to expire in the following instances:

- Flow transport is completed (TCP connections that have reached the end of the byte stream [FIN] or which have been reset [RST] are expired).
- The flow cache has become full.
- A flow becomes inactive. By default, a flow unaltered in the last 15 seconds is classified as inactive.
- An active flow has been monitored for a specified number of minutes. By default, active flows are flushed from the cache when they have been monitored for 30 minutes.

Routing device default timer settings are 15 seconds for the inactive timer and 30 minutes for the active timer. You can configure your own time interval for the inactive timer between 10 and 600 seconds. You can configure the time interval for the active timer between 1 and 60 minutes.

NetFlow Cache Size

After you enable NetFlow on an interface, NetFlow reserves memory to accommodate a number of entries in the NetFlow cache. Normally the size of the NetFlow cache meets the needs of your NetFlow traffic rates. The cache default size is 64K flow cache entries. Each cache entry requires 64 bytes of storage. About 4 MB of DRAM are required for a cache with the default number of entries. You can increase or decrease the number of entries maintained in the cache, if required. For environments with a large amount of flow traffic (such as an internet core router), we recommend a larger value such as 131072 (128K). To obtain information on your flow traffic, use the **show ip cache flow.**

A NetFlow cache can be resized depending on the platform and the amount of DRAM on a line card. For example, the NetFlow cache size is configurable for software-based platforms such as Cisco 75xx and 72xx series routers. The amount of memory on a Cisco 12000 line card determines how many flows are possible in the cache.

Using the **ip flow-cache entries** command, you can configure the size of your NetFlow cache between 1024 entries and 524,288 entries. Using the **cache entries** command (after you configure NetFlow aggregation), you can configure the size of the NetFlow aggregation cache from 1024 entries to 524,288 entries.

We recommend that you not change the values for NetFlow cache entries. Improper use of this feature could cause network problems. To return to the default value for NetFlow cache entries, use the **no ip flow-cache entries** global configuration command.

Restrictions

If you modify any parameters for the NetFlow main cache after you enable NetFlow the changes will not take effect until you reboot the router or disable NetFlow on every interface it is enabled on, and then re-enable NetFlow on the interfaces.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. interface interface-type interface-number
- 4. no ip flow {ingress | egress}
- 5. exit
- 6. Repeat Steps 3 through 5 for every interface that has NetFlow enabled on it
- 7. ip flow-cache entries number
- 8. ip flow-cache timeout active minutes
- 9. ip flow-cache timeout inactive seconds
- 10. interface interface-type interface-number
- 11. ip flow {ingress | egress}
- 12. exit
- 13. Repeat Steps 10 through 12 for every interface that previously had NetFlow enabled on it
- 14. end

DETAILED STEPS

	Command or Action	Purpose (Required) Enables privileged EXEC mode.	
Step 1	enable		
		• Enter your password if prompted.	
	<pre>Example: Router> enable</pre>		
Step 2	configure terminal	(Required) Enters global configuration mode.	
	Example: Router# configure terminal		
Step 3	<pre>interface interface-type interface-number Example: Router(config) # interface ethernet 0/0</pre>	(Required if NetFlow is already enabled on the interface) Specifies the interface that you want to disable NetFlow on and enters interface configuration mode.	
Step 4	no ip flow {ingress egress}	(Required if NetFlow is enabled on the interface) Disables NetFlow on the interface.	
	<pre>Example: Router(config-if)# no ip flow ingress or</pre>	 ingress—captures traffic that is being received by the interface egress—captures traffic that is being transmitted by the interface 	
	<pre>Example: Router(config-if)# no ip flow egress</pre>		
Step 5	exit	(Optional) Exits interface configuration mode and returns to global configuration mode.	
	Example: Router(config-if)# exit	Note You only need to use this command if you need to disable NetFlow on another interface.	
Step 6	Repeat Steps 3 through 5 for the remaining interfaces that have NetFlow enabled on them.	(Required if NetFlow is enabled on any other interfaces) —	
Step 7	ip flow-cache entries number	(Optional) Changes the number of entries maintained in the NetFlow cache.	
	<pre>Example: Router(config) # ip flow-cache entries 131072</pre>	• The <i>number</i> argument is the number of entries to be maintained. The valid range is from 1024 to 524288 entries. The default is 65536 (64K).	
Step 8	ip flow-cache timeout active minutes	(Optional) Specifies flow cache timeout parameters.	
		• The active keyword specifies the active flow timeout.	
	<pre>Example: Router(config)# ip flow-cache timeout active 20</pre>	• The <i>minutes</i> argument specifies the number of minutes that an active flow remains in the cache before the flow times out. The range is from 1 to 60. The default is 30.	

	Command or Action	Purpose
Step 9	ip flow-cache timeout inactive seconds	(Optional) Specifies flow cache timeout parameters.
	<pre>Example: Router(config)# ip flow-cache timeout inactive 130</pre>	 The inactive keyword specifies the inactive flow timeout. The <i>seconds</i> argument specifies the number of seconds that an inactive flow remains in the cache before it times out. The range is from 10 to 600. The default is 15
Step 10	interface interface-type interface-number	(Required) Specifies the interface that you want to enable NetFlow on and enters interface configuration mode.
	<pre>Example: Router(config) # interface ethernet 0/0</pre>	
Step 11	<pre>ip flow {ingress egress}</pre>	(Required) Enables NetFlow on the interface.
	<pre>Example: Router(config-if)# ip flow ingress or</pre>	 ingress—captures traffic that is being received by the interface egress—captures traffic that is being transmitted by the interface
	<pre>Example: Router(config-if)# ip flow egress</pre>	
Step 12	exit	(Optional) Exits interface configuration mode and returns to global configuration mode.
	Example: Router(config-if)# exit	Note You only need to use this command if you need to enable NetFlow on another interface.
Step 13	Repeat Steps 10 through 12 for the remaining interfaces that you disabled NetFlow on in Steps 3 through 5.	(Required for any other interfaces that you need to enable NetFlow on.) —
Step 14	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

Configuration Examples for Configuring NetFlow and NetFlow Data Export

This section contains basic NetFlow configuration examples:

- Configuring Egress NetFlow Accounting: Example, page 32
- Configuring NetFlow Subinterface Support: Example, page 32
- Configuring NetFlow Multiple Export Destinations: Example, page 32
- Configuring NetFlow Version 5 Data Export: Example, page 33
- Configuring NetFlow Version 1 Data Export: Example, page 33

Configuring Egress NetFlow Accounting: Example

The following example shows how to configure Egress NetFlow Accounting as described in the "Egress NetFlow Accounting Benefits: NetFlow Accounting Simplified" section on page 17:

```
configure terminal
!
interface ethernet 0/0
  ip flow egress
'
```

Configuring NetFlow Subinterface Support: Example

The following examples show how to configure NetFlow Subinterface Support as described in the "NetFlow Subinterface Support Benefits: Fine-Tuning Your Data Collection" section on page 19:

- NetFlow Subinterface Support for ingress (received) traffic on a subinterface, page 32
- NetFlow SubInterface Support for egress (transmitted) traffic on a subinterface, page 32

NetFlow Subinterface Support for ingress (received) traffic on a subinterface

```
configure terminal
!
interface ethernet 0/0.1
  ip flow ingress
!
```

NetFlow SubInterface Support for egress (transmitted) traffic on a subinterface

```
configure terminal
!
interface ethernet 1/0.1
  ip flow egress
'
```


NetFlow performs additional checks for the status of each subinterface that requires more CPU processing time and bandwidth. If you have several subinterfaces configured and you want to configure NetFlow data capture on all of them, we recommend that you configure NetFlow on the main interface instead of on the individual subinterfaces.

Configuring NetFlow Multiple Export Destinations: Example

The following example shows how to configure NetFlow Multiple Export Destinations as described in the "NetFlow Multiple Export Destinations: Benefits" section on page 19:

```
configure terminal
!
ip flow-export destination 10.10.10.10 9991
ip flow-export destination 172.16.10.2 9991
```


You can configure a maximum of two export destinations for the main cache and for each aggregation cache.

Configuring NetFlow Version 5 Data Export: Example

The following example shows how to configure the NetFlow data export using the Version 5 export format with the peer AS information.

```
configure terminal
ip flow-export version 5 peer-as
ip flow-export destination 172.16.10.2 99
exit
Router# show ip flow export
Flow export v5 is enabled for main cache
  Exporting flows to 172.16.10.2 (99)
 Exporting using source IP address 172.16.6.1
 Version 5 flow records, peer-as
  0 flows exported in 0 udp datagrams
  0 flows failed due to lack of export packet
  O export packets were sent up to process level
  \ensuremath{\text{0}} export packets were dropped due to no fib
  O export packets were dropped due to adjacency issues
  O export packets were dropped due to fragmentation failures
  O export packets were dropped due to encapsulation fixup failures
Router#
```

Configuring NetFlow Version 1 Data Export: Example

The following example shows how to configure the NetFlow data export using the Version 5 export format with the peer AS information.

```
configure terminal
!
ip flow-export destination 172.16.10.2 99
exit

Router# show ip flow export
Flow export v1 is enabled for main cache
   Exporting flows to 172.16.10.2 (99)
   Exporting using source IP address 172.16.6.1
   Version 1 flow records
   O flows exported in 0 udp datagrams
   O flows failed due to lack of export packet
   O export packets were sent up to process level
   O export packets were dropped due to no fib
   O export packets were dropped due to fragmentation failures
   O export packets were dropped due to encapsulation fixup failures
Router#
```


No AS number or BGP next-hop information is exported with the Version 1 export format.

Additional References

The following sections provide references related to the configuring of NetFlow to capture and export netflow traffic data.

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
The minimum information about and tasks required for configuring NetFlow and NetFlow Data Export	"Getting Started with Configuring NetFlow and NetFlow Data Export"
Tasks for configuring Configuring MPLS Aware NetFlow	Configuring MPLS Aware NetFlow
Tasks for configuring MPLS egress NetFlow accounting	Configuring MPLS Egress NetFlow Accounting and Analysis
Tasks for configuring NetFlow input filters	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow aggregation caches	"Configuring NetFlow Aggregation Caches"
Tasks for configuring NetFlow BGP next hop support	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
Tasks for configuring NetFlow multicast support	"Configuring NetFlow Multicast Accounting"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring NetFlow Layer 2 and Security Monitoring Exports	"NetFlow Layer 2 and Security Monitoring Exports"
Tasks for configuring the SNMP NetFlow MIB	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
Tasks for configuring the NetFlow MIB and Top Talkers feature	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
. 11	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Technical Support website contains	http://www.cisco.com/techsupport
thousands of pages of searchable technical content,	
including links to products, technologies, solutions,	
technical tips, and tools. Registered Cisco.com users	
can log in from this page to access even more content.	

Glossary

AS—autonomous system. A collection of networks under a common administration sharing a common routing strategy. Autonomous systems are subdivided by areas. An autonomous system must be assigned a unique 16-bit number by the Internet Assigned Numbers Authority (IANA).

CEF—Cisco Express Forwarding. Layer 3 IP switching technology that optimizes network performance and scalability for networks with large and dynamic traffic patterns.

BGP—Border Gateway Protocol. An interdomain routing protocol that replaces Exterior Gateway Protocol (EGP). A BGP system exchanges reachability information with other BGP systems. BGP is defined by RFC 1163.

BGP next hop—IP address of the next hop to be used by a router to reach a certain destination.

dCEF—distributed Cisco Express Forwarding. A type of CEF switching in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

export packet—Type of packet built by a device (for example, a router) with NetFlow services enabled that is addressed to another device (for example, the NetFlow Collection Engine). The packet contains NetFlow statistics. The other device processes the packet (parses, aggregates, and stores information on IP flows).

fast switching—Cisco feature in which a route cache is used to expedite packet switching through a router.

flow—A set of packets with the same source IP address, destination IP address, protocol, source/destination ports, and type-of-service, and the same interface on which the flow is monitored. Ingress flows are associated with the input interface, and egress flows are associated with the output interface.

MPLS—Multiprotocol Label Switching. An emerging industry standard for the forwarding of packets along a normally routed path (sometimes called MPLS hop-by-hop forwarding).

NetFlow—A Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

NetFlow Aggregation—A NetFlow feature that lets you summarize NetFlow export data on an IOS router before the data is exported to a NetFlow data collection system such as the NetFlow Collection Engine. This feature lowers bandwidth requirements for NetFlow export data and reduces platform requirements for NetFlow data collection devices.

NetFlow Collection Engine (formerly NetFlow FlowCollector)—Cisco application that is used with NetFlow on Cisco routers and Catalyst series switches. The NetFlow Collection Engine collects packets from the router that is running NetFlow and decodes, aggregates, and stores them. You can generate reports on various aggregations that can be set up on the NetFlow Collection Engine.

NetFlow v9—NetFlow export format Version 9. A flexible and extensible means for carrying NetFlow records from a network node to a collector. NetFlow Version 9 has definable record types and is self-describing for easier NetFlow Collection Engine configuration.

RP—Route Processor. A processor module in the Cisco 7000 series routers that contains the CPU, system software, and most of the memory components that are used in the router. Sometimes called a Supervisory Processor.

Feature Information for Configuring NetFlow and NetFlow Data Export

Table 10 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Release 12.2(1) or 12.0(3)S or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 10 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

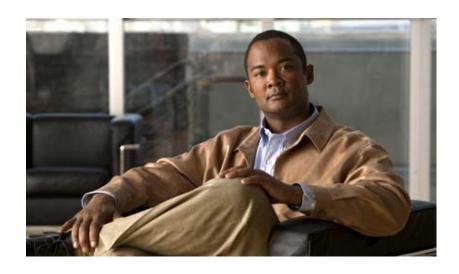
Table 10 Feature Information for Configuring NetFlow and NetFlow Data Export

Feature Name	Releases	Feature Configuration Information
Egress NetFlow Accounting	12.3(11)T Cisco IOS XE Release 2.1	The Egress NetFlow Accounting feature allows NetFlow statistics to be gathered on egress traffic that is exiting the router. Previous versions of NetFlow allow statistics to be gathered only on ingress traffic that is entering the router.
		In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.
		The following sections provide information about this feature:
		Egress NetFlow Accounting Benefits: NetFlow Accounting Simplified
		Configuring Egress NetFlow Accounting: Example
		The following commands were introduced by this feature: ip flow egress and ip flow-egress input-interface .
		The following commands were modified by this feature: flow-sampler, match, show ip cache flow, show ip cache verbose flow, and show ip flow interface.
NetFlow Subinterface Support	12.2(14)S, 12.0(22)S,	The NetFlow Subinterface Support feature provides the ability to enable NetFlow on a per-subinterface basis.
	12.2(15)T 12.2(33)SB Cisco IOS XE Release 2.1	In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.
		The following sections provide information about this feature:
		• NetFlow Subinterface Support Benefits: Fine-Tuning Your Data Collection
		• Configuring NetFlow Subinterface Support: Example
		The following command was introduced by this feature: ip flow ingress.
		The following command was modified by this feature: show ip interface.

Table 10 Feature Information for Configuring NetFlow and NetFlow Data Export (continued)

Feature Name	Releases	Feature Configuration Information
NetFlow Multiple Export Destinations:	12.0(19)S, 12.2(2)T, 12.2(14)S Cisco IOS XE Release 2.1	The NetFlow Multiple Export Destinations feature enables configuration of multiple destinations of the NetFlow data.
		In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.
		The following sections provide information about this feature:
		NetFlow Multiple Export Destinations: Benefits
		• Configuring NetFlow Multiple Export Destinations: Example
		The following commands were modified by this feature: ip flow-aggregation cache, ip flow-export destination, and show ip flow export.
NetFlow v9 Export Format	12.0(24)S, 12.3(1), 12.2(18)S, 12.2(27)SBC, 12.2(18)SXF Cisco IOS XE Release 2.1	The NetFlow v9 Export Format is flexible and extensible, which provides the versatility needed to support new fields and record types. This format accommodates new NetFlow-supported technologies such as Multicast, MPLS, NAT, and BGP next hop.
		In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.
		The following sections provide information about this feature:
		• NetFlow Export Format Versions 9, 8, 5, and 1
		• Configuring NetFlow Data Export Using the Version 9 Export Format
		The following commands were modified by this feature: debug ip flow export , export , ip flow-export , and show ip flow export .
Support for interface names added to NetFlow data export ¹	12.4(2)T	The interface-names keyword for the ip flow-export command configures NetFlow data export to include the interface names from the flows when it exports the NetFlow cache entry to a destination system.

^{1.} This is a minor enhancement. Minor enhancements are not typically listed in Feature Navigator.


CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0804R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Cisco IOS Advanced Configuration Guides

Configuring NetFlow Aggregation Caches

This module contains information about and instructions for configuring NetFlow aggregation caches. The NetFlow main cache is the default cache used to store the data captured by NetFlow. By maintaining one or more extra caches, called *aggregation caches*, the NetFlow Aggregation feature allows limited aggregation of NetFlow data export streams on a router. The aggregation scheme that you select determines the specific kinds of data that are exported to a remote host.

NetFlow is a Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

Module History

This module was first published on June 19th, 2006, and last updated on June 19th, 2006.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all features. To find information about feature support and configuration, use the "Feature Information for Configuring NetFlow Aggregation Caches and Schemes" section on page 46.

Contents

- Prerequisites for Configuring NetFlow Aggregation Caches and Schemes, page 2
- Restrictions for Configuring NetFlow Aggregation Caches and Schemes, page 2
- Information About Configuring NetFlow Aggregation Caches and Schemes, page 2
- How to Configure NetFlow Aggregation Caches and Schemes, page 23
- Configuration Examples for Configuring NetFlow Aggregation Caches and Schemes, page 38
- Additional References, page 42
- Glossary, page 45
- Feature Information for Configuring NetFlow Aggregation Caches and Schemes, page 46

Prerequisites for Configuring NetFlow Aggregation Caches

NetFlow Aggregation Caches

Before you enable NetFlow you must:

- Configure the router for IP routing
- Ensure that one of the following is enabled on your router, and on the interfaces that you want to configure NetFlow on: Cisco Express Forwarding (CEF), distributed CEF, or fast switching
- Understand the resources required on your router because NetFlow consumes additional memory and CPU resources

If you intend to use Version 8 export format with an aggregation cache, configure Version 5 export format for the main cache.

If you need autonomous system (AS) information from the aggregation, make sure to specify either the **peer-as** or **origin-as** keyword in your export command if you have not configured an export format version.

You must explicitly enable each NetFlow aggregation cache by entering the **enabled** keyword from aggregation cache configuration mode.

Router-based aggregation must be enabled for minimum masking.

Restrictions for Configuring NetFlow Aggregation Caches

Cisco IOS Releases 12.2(14)S, 12.0(22)S, or 12.2(15)T

If your router is running a version of Cisco IOS prior to releases 12.2(14)S, 12.0(22)S, or 12.2(15)T the **ip route-cache flow** command is used to enable NetFlow on an interface.

If your router is running Cisco IOS release 12.2(14)S, 12.0(22)S, 12.2(15)T, or later the **ip flow ingress** command is used to enable NetFlow on an interface.

Memory Impact

During times of heavy traffic, the additional flows can fill up the global flow hash table. If you need to increase the size of the global flow hash table, increase the memory of the router.

Performance Impact

Configuring Egress NetFlow accounting with the **ip flow egress** command might adversely affect network performance because of the additional accounting-related computation that occurs in the traffic-forwarding path of the router.

NetFlow Data Export

Restrictions for NetFlow Version 9 Data Export

• Backward compatibility—Version 9 is not backward-compatible with Version 5 or Version 8. If you need Version 5 or Version 8, you must configure it.

- Export bandwidth—Export bandwidth use increases for Version 9 (because of template flowsets) versus Version 5. The increase in bandwidth usage versus Version 5 varies with the frequency with which template flowsets are sent. The default is to resend templates every 20 packets, which has a bandwidth cost of about 4 percent. If necessary, you can lower the resend rate with the **ip flow-export template refresh-rate** packets command.
- Performance impact—Version 9 slightly decreases overall performance, because generating and maintaining valid template flowsets require additional processing.

Restrictions for NetFlow Version 8 Export Format

Version 8 export format is available only for aggregation caches, and it cannot be expanded to support new features.

Information About Configuring NetFlow Aggregation Caches

Before configuring the NetFlow main cache, NetFlow aggregation caches and NetFlow aggregation schemes, you should understand the following information:

- NetFlow Aggregation Caches, page 2
- NetFlow Data Export Format Versions 9, and 8 for NetFlow Aggregation Caches: Overview, page 24

NetFlow Aggregation Caches

- NetFlow Cache Aggregation Benefits, page 3
- NetFlow Cache Aggregation Schemes, page 4
- NetFlow Aggregation Scheme Fields, page 5
- NetFlow AS Aggregation Scheme, page 6
- NetFlow AS-ToS Aggregation Scheme, page 8
- NetFlow Destination Prefix Aggregation Scheme, page 9
- NetFlow Destination Prefix-ToS Aggregation Scheme, page 10
- NetFlow Prefix Aggregation Scheme, page 12
- NetFlow Prefix-Port Aggregation Scheme, page 14
- NetFlow Prefix-ToS Aggregation Scheme, page 16
- NetFlow Protocol Port Aggregation Scheme, page 18
- NetFlow Protocol-Port-ToS Aggregation Scheme, page 19
- NetFlow Source Prefix Aggregation Scheme, page 20
- NetFlow Source Prefix-ToS Aggregation Scheme, page 22

NetFlow Cache Aggregation Benefits

Aggregation of export data is typically performed by NetFlow collection tools on management workstations. Router-based aggregation allows limited aggregation of NetFlow export records to occur on the router. Thus, you can summarize NetFlow export data on the router before the data is exported to a NetFlow data collection system, which has the following benefits:

- Reduces the bandwidth required between the router and the workstations
- · Reduces the number of collection workstations required
- Improves performance and scalability on high flow-per-second routers

NetFlow Cache Aggregation Schemes

Cisco IOS NetFlow aggregation maintains one or more extra caches with different combinations of fields that determine which flows are grouped together. These extra caches are called aggregation caches. The combinations of fields that make up an aggregation cache are referred to as schemes. As flows expire from the main cache, they are added to each enabled aggregation cache.

You can configure each aggregation cache with its individual cache size, cache ager timeout parameter, export destination IP address, and export destination UDP port. As data flows expire in the main cache (depending on the aggregation scheme configured), relevant information is extracted from the expired flow and the corresponding flow entry in the aggregation cache is updated. The normal flow ager process runs on each active aggregation cache the same way it runs on the main cache. On-demand aging is also supported. Each aggregation cache contains different field combinations that determine which data flows are grouped. The default aggregation cache size is 4096 bytes.

You configure a cache aggregation scheme through the use of arguments to the **ip flow-aggregation** cache command. NetFlow supports the following five non-ToS based cache aggregation schemes:

- Autonomous system (AS) aggregation scheme
- Destination prefix aggregation scheme
- Prefix aggregation scheme
- Protocol port aggregation scheme
- Source prefix aggregation scheme

The NetFlow Type of Service (ToS)-Based Router Aggregation feature introduced support for additional cache aggregation schemes, all of which include the ToS byte as one of the fields in the aggregation cache. The following are the six ToS-based aggregation schemes:

- AS-ToS aggregation scheme
- Destination prefix-ToS aggregation scheme
- Prefix-port aggregation scheme
- Prefix-ToS aggregation scheme
- Protocol-port-ToS aggregation scheme
- Source prefix-ToS aggregation scheme

Figure 1 shows an example of how the main NetFlow cache can be aggregated into multiple aggregation caches based upon user-configured aggregation schemes.

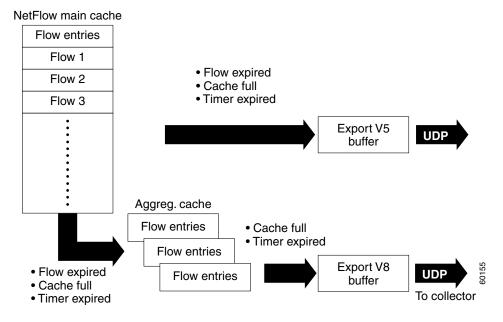


Figure 1 Building a NetFlow Aggregation Cache

NetFlow Aggregation Scheme Fields

Each cache aggregation scheme contains field combinations that differ from any other cache aggregation scheme. The combination of fields determines which data flows are grouped and collected when a flow expires from the main cache. A flow is a set of packets that has common fields, such as the source IP address, destination IP address, protocol, source and destination ports, type-of-service, and the same interface on which the flow is monitored. To manage flow aggregation on your router, you need to configure the aggregation cache scheme that groups and collects the fields from which you want to examine data. Table 1 and Table 2 show the NetFlow fields that are grouped and collected for non-ToS and ToS based cache aggregation schemes.

Table 1 shows the NetFlow fields used in the non-TOS based aggregation schemes.

Table 1 NetFlow Fields Used in the Non-ToS Based Aggregations Schemes

Field	AS	Protocol Port	Source Prefix	Destination Prefix	Prefix
	AU	1 010		I ICIIX	
Source prefix			X		X
Source prefix mask			X		X
Destination prefix				X	X
Destination prefix mask				X	X
Source app port		X			
Destination app port		X			
Input interface	X		X		X
Output interface	X			X	X
IP protocol		X			

Table 1 NetFlow Fields Used in the Non-ToS Based Aggregations Schemes (continued)

Field	AS	Protocol Port	Source Prefix	Destination Prefix	Prefix
Source AS	X		X		X
Destination AS	X			X	X
First time stamp	X	X	X	X	X
Last time stamp	X	X	X	X	X
Number of flows	X	X	X	X	X
Number of packets	X	X	X	X	X
Number of bytes	X	X	X	X	X

Table 2 shows the NetFlow fields used in the TOS based aggregation schemes.

Table 2 NetFlow Fields Used in the ToS Based Aggregation Schemes

Field	AS-ToS	Protocol Port-ToS	Source Prefix-ToS	Destination Prefix-ToS	Prefix-ToS	Prefix-Port
Source prefix			X		X	X
Source prefix mask			X		X	X
Destination prefix				X	X	X
Destination prefix mask				X	X	X
Source app port		X				X
Destination app port		X				X
Input interface	X	X	X		X	X
Output interface	X	X		X	X	X
IP protocol		X				X
Source AS	X		X		X	
Destination AS	X			X	X	
ToS	X	X	X	X	X	X
First time stamp	X	X	X	X		X
Last time stamp	X	X	X	X		X
Number of flows	X	X	X	X		X
Number of packets	X	X	X	X		X
Number of bytes	X	X	X	X		X

NetFlow AS Aggregation Scheme

The NetFlow AS aggregation scheme reduces NetFlow export data volume substantially and generates AS-to-AS traffic flow data. The scheme groups data flows that have the same source BGP AS, destination BGP AS, input interface, and output interface.

The aggregated NetFlow data export records report the following:

- Source and destination BGP AS
- Number of packets summarized by the aggregated record
- Number of flows summarized by the aggregated record
- Number of bytes summarized by the aggregated record
- Source interface
- Destination interface
- Time stamp when the first packet was switched and time stamp when the last packet was switched

Figure 2 shows the data export format for the AS aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 3.

Figure 2 Data Export Format for AS Aggregation Scheme

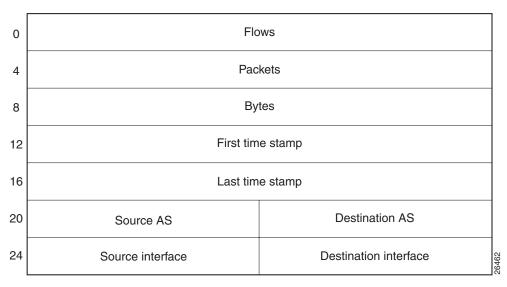


Table 3 lists definitions for the data export record fields used in the AS aggregation scheme.

Table 3 Data Export Record Field Definitions for AS Aggregation Scheme

Field	Definition
Flows	Number of main cache flows that were aggregated
Packets	Number of packets in the aggregated flows
Bytes	Number of bytes in the aggregated flows
First time stamp	System uptime when the first packet was switched
Last time stamp	System uptime when the last packet was switched
Source AS	Autonomous system of the source IP address (peer or origin)
Destination AS	Autonomous system of the destination IP address (peer or origin)
Source interface	SNMP index of the input interface
Destination interface	SNMP index of the output interface

NetFlow AS-ToS Aggregation Scheme

The NetFlow AS-ToS aggregation scheme groups flows that have the same source BGP AS, destination BGP AS, source and destination interfaces, and ToS byte. The aggregated NetFlow export record based on the AS-ToS aggregation scheme reports the following:

- Source BGP AS
- Destination BGP AS
- ToS byte
- Number of flows summarized by the aggregated record
- Number of bytes summarized by this aggregated record
- Number of packets summarized by this aggregation record
- Source and destination interface
- Time stamp when the first packet was switched and time stamp when the last packet was switched

This aggregation scheme is particularly useful for generating AS-to-AS traffic flow data, and for reducing NetFlow export data volume substantially. Figure 3 show the data export format for the AS-ToS aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 4.

Figure 3 Data Export Format for AS-ToS Aggregation Scheme

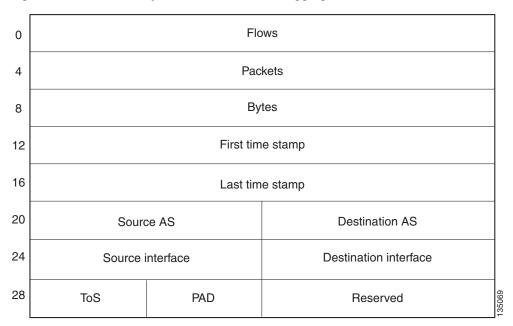


Table 4 lists definitions for the data export record terms used in the AS-ToS aggregation scheme.

Table 4 Data Export Record Term Definitions for AS-ToS Aggregation Scheme

Term	Definition
Flows	Number of main cache flows that were aggregated
Packets	Number of packets in the aggregated flows

Table 4 Data Export Record Term Definitions for AS-ToS Aggregation Scheme (continued)

Term	Definition	
Bytes	Number of bytes in the aggregated flows	
First time stamp	System uptime when the first packet was switched	
Last time stamp	System uptime when the last packet was switched	
Source AS	Autonomous system of the source IP address (peer or origin)	
Destination AS	Autonomous system of the destination IP address (peer or origin)	
Source interface	SNMP index of the input interface	
Destination interface	SNMP index of the output interface	
ToS	Type of service byte	
PAD	Zero field	
Reserved	Zero field	

NetFlow Destination Prefix Aggregation Scheme

The destination prefix aggregation scheme generates data so that you can examine the destinations of network traffic passing through a NetFlow-enabled device. The scheme groups data flows that have the same destination prefix, destination prefix mask, destination BGP AS, and output interface.

The aggregated NetFlow data export records report the following:

- Destination prefix
- Destination prefix mask
- Destination BGP AS
- Number of flows summarized by the aggregated record
- Number of bytes summarized by the aggregated record
- Number of packets summarized by the aggregated record
- Output interface
- Time stamp when the first packet was switched and time stamp when the last packet was switched

Figure 4 shows the data export format for the destination prefix aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 5.

0 Flows 4 **Packets** 8 Bytes 12 First time stamp 16 Last time stamp 20 Destination prefix Destination mask 24 **Destination AS** PAD bits 28 Destination interface Reserved

Figure 4 Destination Prefix Aggregation Data Export Record Format

Table 5 lists definitions for the data export record terms used in the destination prefix aggregation scheme.

Table 5 Data Export Record Term Definitions for Destination Prefix Aggregation Scheme

Term	Definition
Flows	Number of main cache flows that were aggregated
Packets	Number of packets in the aggregated flows
Bytes	Number of bytes in the aggregated flows
First time stamp	System uptime when the first packet was switched
Last time stamp	System uptime when the last packet was switched
Destination prefix	Destination IP address ANDed with the destination prefix mask
Destination mask bits	Number of bits in the destination prefix
PAD	Zero field
Destination AS	Autonomous system of the destination IP address (peer or origin)
Destination interface	SNMP index of the output interface
Reserved	Zero field

NetFlow Destination Prefix-ToS Aggregation Scheme

The NetFlow destination prefix-ToS aggregation scheme groups flows that have the same destination prefix, destination prefix mask, destination BGP AS, ToS byte, and output interface. The aggregated NetFlow export record reports the following:

• Destination IP address

- Destination prefix mask
- Destination AS
- ToS byte
- Number of flows summarized by the aggregated record
- Number of bytes summarized by the aggregated record
- Number of packets summarized by the aggregated record
- Output interface
- Time stamp when the first packet was switched and time stamp when the last packet was switched

This aggregation scheme is particularly useful for capturing data with which you can examine the destinations of network traffic passing through a NetFlow-enabled device. Figure 5 shows the data export format for the Destination prefix-ToS aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 6.

Figure 5 Data Export Format for Destination Prefix-ToS Aggregation Scheme

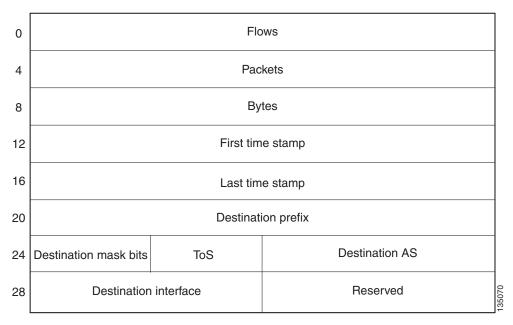


Table 6 lists definitions for the data export record terms used in the destination prefix-ToS aggregation scheme.

Table 6 Data Export Record Term Definitions for Destination Prefix-ToS Aggregation Scheme

Term	Definition
Flows	Number of main cache flows that were aggregated
Packets	Number of packets in the aggregated flows
Bytes	Number of bytes in the aggregated flows
First time stamp	System uptime when the first packet was switched
Last time stamp	System uptime when the last packet was switched

Table 6 Data Export Record Term Definitions for Destination Prefix-ToS Aggregation Scheme

Term	Definition
Destination prefix	Destination IP address ANDed with the destination prefix mask
Dest mask bits	Number of bits in the destination prefix
ToS	Type of service byte
Destination AS	Autonomous system of the destination IP address (peer or origin)
Destination interface	SNMP index of the output interface
Reserved	Zero field

NetFlow Prefix Aggregation Scheme

The NetFlow prefix aggregation scheme generates data so that you can examine the sources and destinations of network traffic passing through a NetFlow-enabled device. The scheme groups data flows that have the same source prefix, destination prefix, source prefix mask, destination prefix mask, source BGP AS, destination BGP AS, input interface, and output interface. See Figure 6.

The aggregated NetFlow data export records report the following:

- Source and destination prefix
- Source and destination prefix mask
- Source and destination BGP AS
- Number of flows summarized by the aggregated record
- Number of bytes summarized by the aggregated record
- Number of packets summarized by the aggregated record
- Input and output interfaces
- Time stamp when the first packet is switched and time stamp when the last packet is switched

Figure 6 shows the data export format for the prefix aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 7.

Figure 6 Data Export Format for Prefix Aggregation Scheme

_					
0	Flows				
4	Packets				
8	Bytes				
12	First time stamp				
16	Last time stamp				
20	Source prefix				
24	Destination prefix				
28	Destination mask bits Source mask bits		Reserved		
32	Source AS Destination AS				
36	Source i	nterface	Destination interface		

Table 7 lists definitions for the data export record terms used in the prefix aggregation scheme.

Table 7 Data Export Record Terms and Definitions for Prefix Aggregation Scheme

Term	Definition
Flows	Number of main cache flows that were aggregated
Packets	Number of packets in the aggregated flows
Bytes	Number of bytes in the aggregated flows
First time stamp	System uptime when the first packet was switched
Last time stamp	System uptime when the last packet was switched
Source prefix	Source IP address ANDed with the source prefix mask, or the prefix to which the source IP address of the aggregated flows belongs
Destination prefix	Destination IP address ANDed with the destination prefix mask
Destination mask bits	Number of bits in the destination prefix
Source mask bits	Number of bits in the source prefix
Reserved	Zero field
Source AS	Autonomous system of the source IP address (peer or origin)
Destination AS	Autonomous system of the destination IP address (peer or origin)
Source interface	SNMP index of the input interface
Destination interface	SNMP index of the output interface

NetFlow Prefix-Port Aggregation Scheme

The NetFlow prefix-port aggregation scheme groups flows that have a common source prefix, source mask, destination prefix, destination mask, source port and destination port when applicable, input interface, output interface, protocol, and ToS byte. The aggregated NetFlow export record reports the following:

- Source prefix
- Source prefix mask
- Destination prefix
- Destination prefix mask
- Source port
- Destination port
- Source interface
- Destination interface
- Protocol
- ToS byte
- Number of flows summarized by the aggregated record
- Number of bytes summarized by the aggregated record
- Number of packets summarized by the aggregation record

• Time stamp when the first packet was switched and time stamp when the last packet was switched This aggregation scheme is particularly useful for capturing data with which you can examine the sources and destinations of network traffic passing through a NetFlow-enabled device. Figure 7 shows the data export record for the prefix-port aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 8.

Figure 7 Data Export Record for Prefix-Port Aggregation Scheme

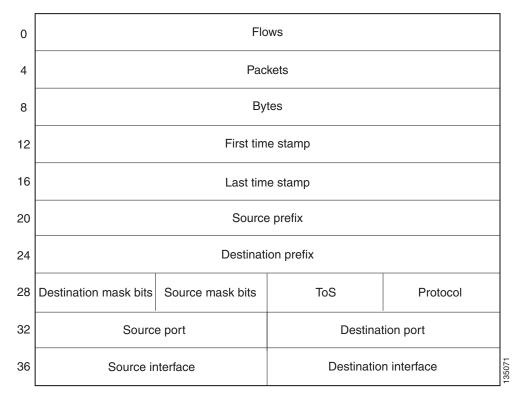


Table 8 lists definitions for the data export record terms used in the prefix-port aggregation scheme.

Table 8 Data Export Record Term Definitions for Prefix-Port Aggregation Scheme

Term	Definition	
Flows	Number of main cache flows that were aggregated	
Packets	Number of packets in the aggregated flows	
Bytes	Number of bytes in the aggregated flows	
First time stamp	System uptime when the first packet was switched	
Last time stamp	System uptime when the last packet was switched	
Source prefix	Source IP address ANDed with the source prefix mask, or the prefix to which the source IP address of the aggregated flows belongs	
Destination prefix	Destination IP address ANDed with the destination prefix mask	
Destination mask bits	Number of bits in the destination prefix	
Source mask bits	Number of bits in the source prefix	

Table 8 Data Export Record Term Definitions for Prefix-Port Aggregation Scheme (continued)

Term	Definition
ToS	Type of service byte
Protocol	IP protocol byte
Source port	Source UDP or TCP port number if applicable
Destination port	Destination User Datagram Protocol (UDP) or TCP port number
Source interface	SNMP index of the input interface
Destination interface	SNMP index of the output interface

NetFlow Prefix-ToS Aggregation Scheme

The NetFlow prefix-tos aggregation scheme groups together flows that have a common source prefix, source mask, destination prefix, destination mask, source BGP AS, destination BGP AS, input interface, output interface, and ToS byte. The aggregated NetFlow export record reports the following:

- Source prefix
- Source prefix mask
- Destination prefix
- Destination prefix mask
- Source AS
- Destination AS
- Source interface
- Destination interface
- ToS byte
- Number of flows summarized by the aggregated record
- Number of bytes summarized by the aggregated record
- Number of packets summarized by the aggregated record
- Time stamp when the first packet was switched and time stamp when the last packet was switched

This aggregation scheme is particularly useful for capturing data so that you can examine the sources and destinations of network traffic passing through a NetFlow-enabled device. Figure 8 displays the data export format for the prefix-tos aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 9.

Flows 0 4 **Packets** Bytes 8 First time stamp 12 16 Last time stamp 20 Source prefix 24 Destination prefix 28 Destination mask bits Source mask bits ToS PAD 32 Source AS **Destination AS** 36 Source interface Destination interface

Figure 8 Data Export Format for Prefix-ToS Aggregation Scheme

Table 9 lists definitions for the data export record terms used in the prefix-ToS aggregation scheme.

Table 9 Data Export Record Term Definitions for Prefix-ToS Aggregation Scheme

Term	Definition
Flows	Number of main cache flows that were aggregated
Packets	Number of packets in the aggregated flows
Bytes	Number of bytes in the aggregated flows
First time stamp	System uptime when the first packet was switched
Last time stamp	System uptime when the last packet was switched
Source prefix	Source IP address ANDed with the source prefix mask, or the prefix to which the source IP address of the aggregated flows belongs
Destination prefix	Destination IP address ANDed with the destination prefix mask
Destination mask bits	Number of bits in the destination prefix
Source mask bits	Number of bits in the source prefix
ToS	Type of service byte
Pad	Zero field
Source AS	Autonomous system of the source IP address (peer or origin)
Destination AS	Autonomous system of the destination IP address (peer or origin)

Table 9 Data Export Record Term Definitions for Prefix-ToS Aggregation Scheme (continued)

Term	Definition
Source interface	SNMP index of the input interface
Destination interface	SNMP index of the output interface

NetFlow Protocol Port Aggregation Scheme

The NetFlow protocol port aggregation scheme captures data so that you can examine network usage by traffic type. The scheme groups data flows with the same IP protocol, source port number, and (when applicable) destination port number.

The aggregated NetFlow data export records report the following:

- Source and destination port numbers
- IP protocol (where 6 = TCP, 17 = UDP, and so on)
- Number of flows summarized by the aggregated record
- Number of bytes summarized by the aggregated record
- Number of packets summarized by the aggregated record
- Time stamp when the first packet was switched and time stamp when the last packet was switched

Figure 9 shows the data export format for the protocol port aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 10.

Figure 9 Data Export Format for Protocol Port Aggregation Scheme

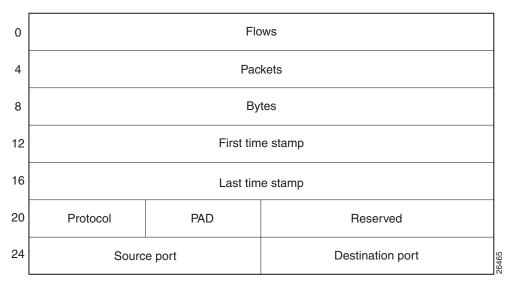


Table 10 lists definitions for the data export record terms used in the protocol port aggregation scheme.

Table 10 Data Export Record Term Definitions for Protocol Port Aggregation Scheme

Term	Definition
Flows	Number of main cache flows that were aggregated
Packets	Number of packets in the aggregated flows
Bytes	Number of bytes in the aggregated flows
First time stamp	System uptime when the first packet was switched
Last time stamp	System uptime when the last packet was switched
Protocol	IP protocol byte
PAD	Zero field
Reserved	Zero field
Source port	Source UDP or TCP port number if applicable
Destination port	Destination User Datagram Protocol (UDP) or TCP port number

NetFlow Protocol-Port-ToS Aggregation Scheme

The NetFlow protocol-port-tos aggregation scheme groups flows that have a common IP protocol, ToS byte, source and (when applicable) destination port numbers, and source and destination interfaces. The aggregated NetFlow Export record reports the following:

- Source application port number
- Destination port number
- Source and destination interface
- IP protocol
- ToS byte
- · Number of flows summarized by the aggregated record
- Number of bytes summarized by the aggregated record
- · Number of packets summarized by the aggregation record
- Time stamp when the first packet was switched and time stamp when the last packet was switched

This aggregation scheme is particularly useful for capturing data so that you can examine network usage by type of traffic. Figure 10 shows the data export format for the protocol-port-tos aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 11.

Flows 0 4 **Packets** 8 Bytes First time stamp 12 16 Last time stamp 20 Protocol ToS Reserved 24 Source port Destination port 28 Destination interface Source interface

Figure 10 Data Export Format for Protocol-Port-ToS Aggregation Scheme

Table 11 lists definitions for the data export record terms used in the protocol-port-ToS aggregation scheme.

Table 11 Data Export Record Term Definitions for Protocol-Port-ToS Aggregation Scheme

Term	Definition	
Flows	Number of main cache flows that were aggregated	
Packets	Number of packets in the aggregated flows	
Bytes	Number of bytes in the aggregated flows	
First time stamp	System uptime when the first packet was switched	
Last time stamp	System uptime when the last packet was switched	
Protocol	IP protocol byte	
ToS	Type of service byte	
Reserved	Zero field	
Source port	Source UDP or TCP port number if applicable	
Destination port	Destination User Datagram Protocol (UDP) or TCP port number	
Source interface	SNMP index of the input interface	
Destination interface	estination interface SNMP index of the output interface	

NetFlow Source Prefix Aggregation Scheme

The NetFlow source prefix aggregation scheme captures data so that you can examine the sources of network traffic passing through a NetFlow-enabled device. The scheme groups data flows that have the same source prefix, source prefix mask, source BGP AS, and input interface.

The aggregated NetFlow data export records report the following:

- Source prefix
- Source prefix mask
- Source BGP AS
- Number of bytes summarized by the aggregated record
- Number of packets summarized by the aggregated record
- Input interface
- Time stamp when the first packet was switched and time stamp when the last packet was switched

Figure 11 show the data export format for the source prefix aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 12.

Figure 11 Data Export Format for Source Prefix Aggregation Scheme

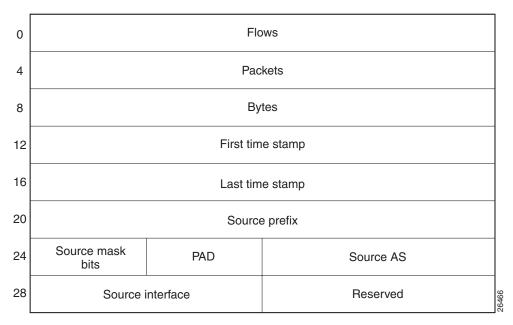


Table 12 lists definitions for the data export record terms used in the source prefix aggregation scheme.

Table 12 Data Export Record Term Definitions for Source Prefix Aggregation Scheme

Term	Definition	
Flows	Number of main cache flows that were aggregated	
Packets	Number of packets in the aggregated flows	
Bytes	Number of bytes in the aggregated flows	
First time stamp	System uptime when the first packet was switched	
Last time stamp	System uptime when the last packet was switched	
Source prefix	Source IP address ANDed with the source prefix mask, or prefix to which the source IP address of the aggregated flobelongs	

Table 12 Data Export Record Term Definitions for Source Prefix Aggregation Scheme

Term	Definition
Source mask bits	Number of bits in the source prefix
PAD	Zero field
Source AS	Autonomous system of the source IP address (peer or origin)
Source interface	SNMP index of the input interface
Reserved	Zero field

NetFlow Source Prefix-ToS Aggregation Scheme

The NetFlow source prefix-ToS aggregation scheme groups flows that have a common source prefix, source prefix mask, source BGP AS, ToS byte, and input interface. The aggregated NetFlow export record reports the following:

- · Source prefix
- · Source prefix mask
- Source AS
- ToS byte
- Number of bytes summarized by the aggregated record
- Number of packets summarized by the aggregation record
- Input interface
- Time stamp when the first packet was switched and time stamp when the last packet was switched

This aggregation scheme is particularly useful for capturing data so that you can examine the sources of network traffic passing through a NetFlow-enabled device. Figure 12 show the data export format for the source prefix-ToS aggregation scheme. For a definition of the data export terms used in the aggregation scheme, see Table 13.

When a router does not have a prefix for the source IP address in the flow, NetFlow uses 0.0.0.0 with 0 mask bits rather than making /32 entries. This prevents DOS attacks that use random source addresses from thrashing the aggregation caches. This is also done for the destination in the destination prefix-ToS, the prefix-ToS, and prefix-port aggregation schemes.

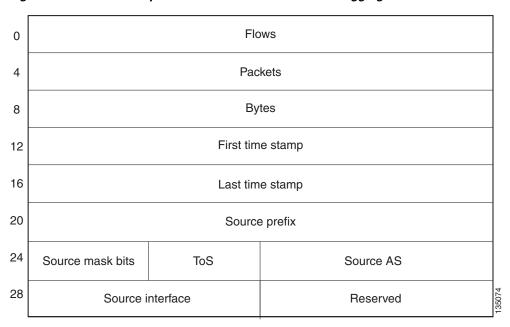


Figure 12 Data Export Format for Source Prefix-ToS Aggregation Scheme

Table 13 lists definitions for the data export record terms used in the source prefix-ToS aggregation scheme.

Table 13 Data Export Record Term Definitions for Source Prefix-ToS Aggregation Scheme

Term	Definition	
Flows	Number of main cache flows that were aggregated	
Packets	Number of packets in the aggregated flows	
Bytes	Number of bytes in the aggregated flows	
First time stamp	System uptime when the first packet was switched	
Last time stamp	System uptime when the last packet was switched	
Source prefix	Source IP address ANDed with the source prefix mask, or the prefix to which the source IP address of the aggregated flows belongs	
Source mask bits	Number of bits in the source prefix	
ToS	Type of service byte	
Source AS	Autonomous system of the source IP address (peer or origin)	
Source interface	SNMP index of the input interface	
Reserved	Zero field	

NetFlow Data Export Format Versions 9, and 8 for NetFlow Aggregation Caches: Overview

Export formats available for NetFlow aggregation caches are the Version 9 export format and the Version 8 export format.

- Version 9—A flexible and extensible format, which provides the versatility needed for support of
 new fields and record types. This format accommodates new NetFlow-supported technologies such
 as Multicast, Multiprotocol Label Switching (MPLS), and Border Gateway Protocol (BGP)
 next hop. Version 9 export format enables you to use the same version for main and aggregation
 caches, and the format is extendable, so you can use the same export format with future features.
- Version 8—A format added to support data export from aggregation caches. Export datagrams contain a subset of the usual Version 5 export data, which is valid for the particular aggregation cache scheme. Version 8 is the default export version for aggregation caches when data export is configured.

The Version 9 export format is flexible and extensible, which provides the versatility needed for the support of new fields and record types. You can use the Version 9 export format for both main and aggregation caches.

The Version 8 export format was added to support data export from aggregation caches. This format allows export datagrams to contain a subset of the Version 5 export data that is valid for the cache aggregation scheme.

Refer to the "NetFlow Data Export" section of the "Configuring NetFlow Aggregation Caches" module for more details on NetFlow Data Export Formats.

How to Configure NetFlow Aggregation Caches

This section is broken down into the following subsections:

- Configuring NetFlow Aggregation Caches, page 25 (required)
- Verifying the Aggregation Cache Configuration, page 28 (optional)

Configuring NetFlow Aggregation Caches

Perform the steps in this required to enable NetFlow and configure a NetFlow aggregation cache.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip flow-aggregation cache {as | as-tos | bgp-nexthop-tos | destination-prefix | destination-prefix-tos | prefix | prefix-port | prefix-tos | protocol-port | protocol-port-tos | source-prefix | source-prefix-tos}
- 4. cache entries number
- 5. cache timeout active minutes
- 6. cache timeout inactive seconds
- **7. export destination** {{*ip-address* | *hostname*} *udp-port*}
- **8.** Repeat Step 7 once to configure a second export destination
- 9. export version [9 | 8]
- 10. enabled
- 11. exit
- **12. interface** *interface-type interface-number*
- 13. ip flow {ingress | egress}
- 14. exit
- **15.** Repeat Steps 12 through 14 to enable NetFlow on other interfaces
- 16. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
	<pre>Example: Router> enable</pre>	Enter your password if prompted.
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>ip flow-aggregation cache {as as-tos bgp-nexthop-tos destination-prefix destination-prefix-tos prefix prefix-port prefix-tos protocol-port protocol-port-tos source-prefix source-prefix-tos}</pre>	 (Required) Specifies the aggregation cache scheme and enables aggregation cache configuration mode. The as keyword configures the AS aggregation cache.
	Example: Router(config) # ip flow-aggregation cache destination-prefix	 The as-tos keyword configures the AS ToS aggregation cache. The bgp-nexthop-tos keyword configures the BGP nexthop aggregation cache.
		• The destination-prefix keyword configures the destination prefix aggregation cache.
		• The destination-prefix-tos keyword configures the destination prefix ToS aggregation cache.
		• The prefix keyword configures the prefix aggregation cache.
		• The prefix-port keyword configures the prefix port aggregation cache.
		• The prefix-tos keyword configures the prefix ToS aggregation cache.
		• The protocol-port keyword configures the protocol port aggregation cache.
		• The protocol-port-tos keyword configures the protocol port ToS aggregation cache.
		• The source-prefix keyword configures the source prefix aggregation cache.
		• The source-prefix-tos keyword configures the source prefix ToS aggregation cache.
Step 4	cache entries number	(Optional) Configures aggregation cache operational parameters.
	Example: Router(config-flow-cache)# cache entries 2048	• The entries <i>number</i> keyword-argument pair is the number of cached entries allowed in the aggregation cache. The range is from 1024 to 524288. The default is 4096.

	Command or Action	Purpose
Step 5	cache timeout active minutes	(Optional) Configures aggregation cache operational parameters.
	<pre>Example: Router(config-flow-cache)# cache timeout active</pre>	• The timeout keyword dissolves the session in the aggregation cache.
	15	• The active <i>minutes</i> keyword-argument pair specifies the number of minutes that an entry is active. The range is from 1 to 60 minutes. The default is 30 minutes.
Step 6	cache timeout inactive seconds	(Optional) Configures aggregation cache operational parameters.
	<pre>Example: Router(config-flow-cache)# cache timeout</pre>	• The timeout keyword dissolves the session in the aggregation cache.
	inactive 300	• The inactive <i>seconds</i> keyword-argument pair specifies the number of seconds that an inactive entry stays in the aggregation cache before the entry times out. The range is from 10 to 600 seconds. The default is 15 seconds.
Step 7	<pre>export destination {{ip-address hostname} udp-port}</pre>	(Optional) Enables the exporting of information from NetFlow aggregation caches.
	<pre>Example: Router(config-flow-cache) # export destination 172.30.0.1 991</pre>	 The <i>ip-address</i> <i>hostname</i> argument is the destination IP address or hostname. The <i>port</i> argument is the destination UDP port.
Step 8	Repeat Step 7 once to configure a second export destination.	(Optional) You can configure a maximum of two export destinations for each NetFlow aggregation cache.
Step 9	export version [9 8]	(Optional) Specifies data export format Version.
	<pre>Example: Router(config-flow-cache)# export version 9</pre>	• The version 9 keyword specifies that the export packet uses the Version 9 format.
Step 10	enabled	(Required) Enables the aggregation cache.
	<pre>Example: Router(config-flow-cache)# enabled</pre>	
Step 11	exit	(Required) Exits NetFlow aggregation cache configuration mode and returns to global configuration mode.
	Example: Router(config-if)# exit	
Step 12	interface interface-type interface-number	(Required) Specifies the interface that you want to enable NetFlow on and enters interface configuration mode.
	<pre>Example: Router(config)# interface ethernet 0/0</pre>	

	Command or Action	Purpose
Step 13	ip flow {ingress egress}	(Required) Enables NetFlow on the interface.
	<pre>Example: Router(config-if)# ip flow ingress or</pre>	 ingress—captures traffic that is being received by the interface egress—captures traffic that is being transmitted by the interface.
	<pre>Example: Router(config-if)# ip flow egress</pre>	
Step 14	exit	(Optional) Exits interface configuration mode and returns to global configuration mode.
	Example: Router(config-if)# exit	Note You only need to use this command if you want to enable NetFlow on another interface.
Step 15	Repeat Steps 12 through 14 to enable NetFlow on other interfaces	(Optional) —
Step 16	end	Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

Verifying the Aggregation Cache Configuration

Perform the steps in this optional task to verify that:

- The NetFlow aggregation cache is operational
- NetFlow Data Export for the aggregation cache is operational
- To view the aggregation cache statistics.

SUMMARY STEPS

- 1. show ip cache [ip-address-prefix prefix-mask] flow aggregation {as | as-tos | bgp-nexthop-tos | destination-prefix | destination-prefix-tos | prefix | prefix-port | prefix-tos | protocol-port | protocol-port-tos | source-prefix | source-prefix-tos}
- 2. show ip flow export

DETAILED STEPS

Step 1 show ip cache flow aggregation {as | as-tos | bgp-nexthop-tos | destination-prefix | destination-prefix-tos | prefix | prefix-port | prefix-tos | protocol-port | protocol-port-tos | source-prefix | source-prefix-tos}

Use the **show ip cache flow aggregation destination-prefix** command to verify the configuration of an destination-prefix aggregation cache. For example:

Router# show ip cache flow aggregation destination-prefix

IP Flow Switching Cache, 139272 bytes 5 active, 2043 inactive, 9 added 841 ager polls, 0 flow alloc failures

```
Active flows timeout in 15 minutes
  Inactive flows timeout in 300 seconds
IP Sub Flow Cache, 11144 bytes
  5 active, 507 inactive, 9 added, 9 added to flow
  O alloc failures, O force free
  1 chunk, 2 chunks added
Dst. If
             Dst Prefix Msk AS Flows Pkts B/Pk Active
             0.0.0.0 /0 0
172.16.6.0 /24 0
172.16.7.0 /24 0
172.16.1.0 /24 0
                                      5
                                               13
Nu 11
                                                       52
                                                           138.9
                                                             0.0
Et0/0.1
                                            1
                                                 1
                                                       56
                                          3
Et1/0.1
                                                 31K 1314
                                                           187.3
                                         16 104K 1398 188.4
Et.0/0.1
             172.16.10.0 /24 0 9 99K 1412 183.3
Et1/0.1
Router#
```

Use the **show ip cache verbose flow aggregation source-prefix** command to verify the configuration of a source-prefix aggregation cache. For example:

Router# show ip cache verbose flow aggregation source-prefix

```
IP Flow Switching Cache, 278544 bytes
  4 active, 4092 inactive, 4 added
 51 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 21640 bytes
  4 active, 1020 inactive, 4 added, 4 added to flow
 O alloc failures, O force free
 1 chunk, 1 chunk added
                            Msk AS Flows Pkts B/Pk Active
Src If
             Src Prefix
Et1/0.1
             172.16.10.0 /24 0
                                       4 35K 1391
                                                            67.9
            172.16.6.0 /24 0
172.16.7.0 /24 0
172.16.1.0 /24 0
Et0/0.1
                                               5 88
                                          2
                                                            60.6
                                          2 3515 1423
Et1/0.1
                                                            58.6
Et0/0.1
                                               20K 1416
                                                            71.9
Router#
```

Use the **show ip cache verbose flow aggregation protocol-port** command to verify the configuration of a protocol-port aggregation cache. For example:

Router# show ip cache verbose flow aggregation protocol-port

```
IP Flow Switching Cache, 278544 bytes
 4 active, 4092 inactive, 4 added
 158 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 21640 bytes
 0 active, 1024 inactive, 0 added, 0 added to flow
 O alloc failures, O force free
 1 chunk, 1 chunk added
Protocol Source Port Dest Port Flows Packets Bytes/Packet Active
                    0x0000
                                6
        0x0000
                                      52K
                                               1405 104.3
 0x01
                                  1
                                          3
                                                   52
                                                              56.9
 0x11
           0x0208
                       0 \times 0208
          0x0000 0x0800 2 846 1500
0x0000 0x0B01 2 10 56
                                                              59.8
 0 \times 01
 0 \times 01
                                                              63.0
Router#
```

Step 2 show ip flow export

Use the **show ip flow export** command to verify that NetFlow Data Export is operational for the aggregation cache. For example:

```
Router# show ip flow export
Flow export v1 is disabled for main cache
 Version 1 flow records
  Cache for protocol-port aggregation:
    Exporting flows to 172.16.20.4 (991) 172.30.0.1 (991)
    Exporting using source IP address 172.16.6.2
  Cache for source-prefix aggregation:
    Exporting flows to 172.16.20.4 (991) 172.30.0.1 (991)
    Exporting using source IP address 172.16.6.2
  Cache for destination-prefix aggregation:
    Exporting flows to 172.16.20.4 (991) 172.30.0.1 (991)
   Exporting using source IP address 172.16.6.2
  40 flows exported in 20 udp datagrams
  0 flows failed due to lack of export packet
  20 export packets were sent up to process level
  O export packets were dropped due to no fib
  O export packets were dropped due to adjacency issues
  0 export packets were dropped due to fragmentation failures
  0 export packets were dropped due to encapsulation fixup failures
Router#
```

Configuration Examples for Configuring NetFlow Aggregation Caches

This section provides the following examples for configuring an aggregation cache:

- Configuring an AS Aggregation Cache: Example, page 30
- Configuring a Destination Prefix Aggregation Cache: Example, page 31
- Configuring a Prefix Aggregation Cache: Example, page 31
- Configuring a Protocol Port Aggregation Cache: Example, page 31
- Configuring a Source Prefix Aggregation Cache: Example, page 32
- Configuring an AS-ToS Aggregation Cache: Example, page 32
- Configuring a Prefix-ToS Aggregation Cache: Example, page 32
- Configuring the Minimum Mask of a Prefix Aggregation Scheme: Example, page 33
- Configuring the Minimum Mask of a Destination Prefix Aggregation Scheme: Example, page 33
- Configuring the Minimum Mask of a Source Prefix Aggregation Scheme: Example, page 33
- Configuring NetFlow Version 9 Data Export for Aggregation Caches: Example, page 33
- Configuring NetFlow Version 8 Data Export for Aggregation Caches: Example, page 34

Configuring an AS Aggregation Cache: Example

The following example shows how to configure an AS aggregation cache with a cache size of 2046, an inactive timeout of 200 seconds, a cache active timeout of 45 minutes, an export destination IP address of 10.42.42.1, and a destination port of 9992:

```
configure terminal
!
ip flow-aggregation cache as
```

```
cache entries 2046
cache timeout inactive 200
cache timeout active 45
export destination 10.42.42.1 9992
enabled
!
interface Ethernet0/0
ip flow ingress
!
end
```

Configuring a Destination Prefix Aggregation Cache: Example

The following example shows how to configure a destination prefix aggregation cache with a cache size of 2046, an inactive timeout of 200 seconds, a cache active timeout of 45 minutes, an export destination IP address of 10.42.42.1, and a destination port of 9992:

```
configure terminal !

ip flow-aggregation cache destination-prefix cache entries 2046
  cache timeout inactive 200
  cache timeout active 45
  export destination 10.42.42.1 9992
  enabled !

interface Ethernet0/0
  ip flow ingress !
  end
```

Configuring a Prefix Aggregation Cache: Example

The following example shows how to configure a prefix aggregation cache with a cache size of 2046, an inactive timeout of 200 seconds, a cache active timeout of 45 minutes, an export destination IP address of 10.42.42.1, and a destination port of 9992:

```
configure terminal !
ip flow-aggregation cache prefix cache entries 2046
cache timeout inactive 200
cache timeout active 45
export destination 10.42.42.1 9992
enabled !
interface Ethernet0/0
ip flow ingress !
end
```

Configuring a Protocol Port Aggregation Cache: Example

The following example shows how to configure a protocol port aggregation cache with a cache size of 2046, an inactive timeout of 200 seconds, a cache active timeout of 45 minutes, an export destination IP address of 10.42.42.1, and a destination port of 9992:

```
configure terminal
!
ip flow-aggregation cache protocol-port
```

```
cache entries 2046
cache timeout inactive 200
cache timeout active 45
export destination 10.42.42.1 9992
enabled
!
interface Ethernet0/0
ip flow ingress
!
end
```

Configuring a Source Prefix Aggregation Cache: Example

The following example shows how to configure a source prefix aggregation cache with a cache size of 2046, an inactive timeout of 200 seconds, a cache active timeout of 45 minutes, an export destination IP address of 10.42.42.1, and a destination port of 9992:

```
configure terminal !
ip flow-aggregation cache source-prefix cache entries 2046
cache timeout inactive 200
cache timeout active 45
export destination 10.42.42.1 9992
enabled !
interface Ethernet0/0
ip flow ingress !
```

Configuring an AS-ToS Aggregation Cache: Example

The following example shows how to configure an AS-ToS aggregation cache with a cache active timeout of 20 minutes, an export destination IP address of 10.2.2.2, and a destination port of 9991:

```
configure terminal
!
ip flow-aggregation cache as-tos
  cache timeout active 20
  export destination 10.2.2.2 9991
  enabled
!
interface Ethernet0/0
  ip flow ingress
!
  end
```

Configuring a Prefix-ToS Aggregation Cache: Example

The following example shows how to configure a prefix-ToS aggregation cache with an export destination IP address of 10.4.4.4 and a destination port of 9995:

```
configure terminal
!
ip flow-aggregation cache prefix-tos
  export destination 10.4.4.4 9995
  enabled
!
interface Ethernet0/0
```

```
ip flow ingress
!
end
```

Configuring the Minimum Mask of a Prefix Aggregation Scheme: Example

The following example shows how to configure the minimum mask for a prefix aggregation scheme:

```
configure terminal
!
ip flow-aggregation cache prefix
mask source minimum 24
mask destination minimum 28
enabled
!
interface Ethernet0/0
ip flow ingress
!
end
```

Configuring the Minimum Mask of a Destination Prefix Aggregation Scheme: Example

The following example shows how to configure the minimum mask for a destination prefix aggregation scheme:

```
configure terminal
!
ip flow-aggregation cache destination-prefix
mask destination minimum 32
enabled
!
interface Ethernet0/0
ip flow ingress
!
end
```

Configuring the Minimum Mask of a Source Prefix Aggregation Scheme: Example

The following example shows how to configure the minimum mask for a source prefix aggregation scheme:

```
configure terminal
!
ip flow-aggregation cache source-prefix
mask source minimum 30
  enabled
!
interface Ethernet0/0
  ip flow ingress
!
  end
```

Configuring NetFlow Version 9 Data Export for Aggregation Caches: Example

The following example shows how to configure NetFlow Version 9 data export for an AS aggregation cache scheme:

```
configure terminal
```

```
!
ip flow-aggregation cache as
export destination 10.42.42.2 9991
export template refresh-rate 10
export version 9
export template timeout-rate 60
enabled
!
interface Ethernet0/0
ip flow ingress
!
end
```

Configuring NetFlow Version 8 Data Export for Aggregation Caches: Example

The following example shows how to configure NetFlow Version 8 data export for an AS aggregation cache scheme:

```
configure terminal
!
ip flow-aggregation cache as
  export destination 10.42.42.2 9991
  export destination 10.42.41.1 9991
  export version 8
  enabled
!
interface Ethernet0/0
  ip flow ingress
!
  end
```

Additional References

The following sections provide references related to configuring NetFlow aggregation caches and schemes.

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
The minimum information about and tasks required for configuring NetFlow and NetFlow Data Export	"Getting Started with Configuring NetFlow and NetFlow Data Export"
Tasks for configuring NetFlow to capture and export network traffic data	"Configuring NetFlow and NetFlow Data Export"
Tasks for configuring Configuring MPLS Aware NetFlow	Configuring MPLS Aware NetFlow
Tasks for configuring MPLS egress NetFlow accounting	Configuring MPLS Egress NetFlow Accounting and Analysis
Tasks for configuring NetFlow input filters	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow BGP next hop support	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
Tasks for configuring NetFlow multicast support	"Configuring NetFlow Multicast Accounting"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring NetFlow Layer 2 and Security Monitoring Exports	"NetFlow Layer 2 and Security Monitoring Exports"
Tasks for configuring the SNMP NetFlow MIB	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
Tasks for configuring the NetFlow MIB and Top Talkers feature	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
feature, and support for existing MIBs has not been	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Technical Support website contains	http://www.cisco.com/techsupport
thousands of pages of searchable technical content,	
including links to products, technologies, solutions,	
technical tips, and tools. Registered Cisco.com users	
can log in from this page to access even more content.	

Glossary

AS—autonomous system. A collection of networks under a common administration sharing a common routing strategy. Autonomous systems are subdivided by areas. An autonomous system must be assigned a unique 16-bit number by the Internet Assigned Numbers Authority (IANA).

CEF—Cisco Express Forwarding. A Layer 3 IP switching technology that optimizes network performance and scalability for networks with large and dynamic traffic patterns.

dCEF—Distributed Cisco Express Forwarding. Type of CEF switching in which line cards maintain an identical copy of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

export packet—Type of packet built by a device (for example, a router) with NetFlow services enabled. The packet contains NetFlow statistics and is addressed to another device (for example, the NetFlow Collection Engine). The other device processes the packet (parses, aggregates, and stores information on IP flows).

flow—A set of packets with the same source IP address, destination IP address, protocol, source/destination ports, and type-of-service, and the same interface on which flow is monitored. Ingress flows are associated with the input interface, and egress flows are associated with the output interface.

flowset—Collection of flow records that follow the packet header in an export packet. A flowset contains information that must be parsed and interpreted by the NetFlow Collection Engine. There are two different types of flowsets: template flowsets and data flowsets. An export packet contains one or more flowsets, and both template and data flowsets can be mixed in the same export packet.

NetFlow—Cisco IOS accounting feature that maintains per-flow information.

NetFlow Aggregation—A NetFlow feature that lets you summarize NetFlow export data on an IOS router before the data is exported to a NetFlow data collection system such as the NetFlow Collection Engine. This feature lowers bandwidth requirements for NetFlow export data and reduces platform requirements for NetFlow data collection devices.

NetFlow Collection Engine (formerly NetFlow FlowCollector)—Cisco application that is used with NetFlow on Cisco routers and Catalyst series switches. The NetFlow Collection Engine collects packets from the router that is running NetFlow and decodes, aggregates, and stores them. You can generate reports on various aggregations that can be set up on the NetFlow Collection Engine.

NetFlow v9—NetFlow export format Version 9. A flexible and extensible means for carrying NetFlow records from a network node to a collector. NetFlow Version 9 has definable record types and is self-describing for easier NetFlow Collection Engine configuration.

QoS—quality of service. A measure of performance for a transmission system that reflects its transmission quality and service availability.

template flowset—One or more template records that are grouped in an export packet.

ToS—type of service. The second byte in the IP header. It indicates the desired quality of service (QoS) for a particular datagram.

Feature Information for Configuring NetFlow Aggregation Caches

Table 14 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Release 12.2(1) or 12.0(3)S or a later version appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 14 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 14 Feature Information for Configuring NetFlow Aggregation Caches

Feature Name	Releases	Feature Configuration Information
NetFlow ToS-Based Router Aggregation	12.0(15)S, 12.2(4)T, 12.2(14)S Cisco IOS XE Release 2.1	The NetFlow ToS-Based Router Aggregation feature enables you to limit router-based type of service (ToS) aggregation of NetFlow export data. The aggregation of export data provides a summarized NetFlow export data that can be exported to a collection device. The result is lower bandwidth requirements for NetFlow export data and reduced platform requirements for NetFlow data collection devices.
		In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.
		The following sections provide information about this feature:
		• NetFlow Cache Aggregation Benefits, page 3
		NetFlow Cache Aggregation Schemes, page 4
		 NetFlow Data Export Format Versions 9, and 8 for NetFlow Aggregation Caches: Overview, page 24
		• NetFlow Aggregation Scheme Fields, page 5
		NetFlow AS-ToS Aggregation Scheme, page 8
		• NetFlow Destination Prefix-ToS Aggregation Scheme, page 10
		NetFlow Prefix-Port Aggregation Scheme, page 14
		NetFlow Prefix-ToS Aggregation Scheme, page 16
		• NetFlow Protocol-Port-ToS Aggregation Scheme, page 19
		• NetFlow Source Prefix-ToS Aggregation Scheme, page 22
		Configuring NetFlow Aggregation Caches, page 25
		The following commands were modified by this feature: ip flow-aggregation cache, show ip cache verbose flow aggregation, and show ip flow export.

Table 14 Feature Information for Configuring NetFlow Aggregation Caches (continued)

Feature Name	Releases	Feature Configuration Information
NetFlow Minimum Prefix Mask for Router-Based Aggregation	12.0(11)S, 12.1(2)T Cisco IOS XE Release 2.1	The NetFlow Minimum Prefix Mask for Router-Based Aggregation feature allows you to set a minimum mask size for prefix aggregation, destination prefix aggregation, and source prefix aggregation schemes.
		In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.
		The following sections provide configuration information about this feature:
		• NetFlow Destination Prefix Aggregation Scheme, page 9
		 NetFlow Destination Prefix-ToS Aggregation Scheme, page 10
		• NetFlow Destination Prefix Aggregation Scheme, page 9
		NetFlow Prefix Aggregation Scheme, page 12
		NetFlow Prefix-ToS Aggregation Scheme, page 16
		The following commands were modified by this feature: ip flow-aggregation cache, mask destination, mask source, and show ip cache flow aggregation.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0804R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Using NetFlow Filtering or Sampling to Select the Network Traffic to Track

This module contains information about and instructions for selecting the network traffic to track through the use of NetFlow filtering or sampling. The NetFlow Input Filtering and Random Sampled NetFlow features, described in this module, allow you to collect data from specific subsets of traffic.

- The NetFlow Input Filters feature provides NetFlow data for a specific subset of traffic by letting you create filters to select flows for NetFlow processing. For example, you can select flows from a specific group of hosts.
- The Random Sampled NetFlow feature provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of *n* sequential packets (*n* is a user-configurable parameter).

NetFlow is a Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

Module History

This module was first published on June 19th, 2006, and last updated on June 19th, 2006.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all features. To find information about feature support and configuration, use the "Feature Information for Using NetFlow Filtering or Sampling to Select Network Traffic to Track" section on page 21.

Contents

- Prerequisites for Using NetFlow Filtering or Sampling to Select Network Traffic to Track, page 2
- Restrictions for Using NetFlow Filtering or Sampling to Select Network Traffic to Track, page 2
- Information About Using NetFlow Filtering or Sampling to Select Network Traffic to Track, page 3
- How to Configure NetFlow Filtering or Sampling, page 7
- Configuration Examples for Configuring NetFlow Filtering and Sampling, page 16
- Additional References, page 18

- Glossary, page 20
- Feature Information for Using NetFlow Filtering or Sampling to Select Network Traffic to Track, page 21

Prerequisites for Using NetFlow Filtering or Sampling to Select Network Traffic to Track

Prerequisites for NetFlow Input Filters

Before you can configure the NetFlow Input Filters feature, you must

- Configure the router for IP routing
- Configure Cisco Express Forwarding (CEF) switching or distributed CEF (dCEF) switching on the
 router and on the interfaces that you want to enable NetFlow Input Filters on (fast switching is not
 supported)
- Create traffic classes and define NetFlow sampler maps

The NetFlow Input Filters feature is supported in the Version 5 and Version 9 NetFlow export formats.

Prerequisites for Random Sampled NetFlow

Before you can configure the Random Sampled NetFlow feature, you must:

- Configure the router for IP routing
- Configure Cisco Express Forwarding (CEF) switching or distributed CEF (dCEF) switching on the
 router and on the interfaces that you want to enable Random Sampled NetFlow on (fast switching is
 not supported)
- Configure NetFlow Version 5 or Version 9 data export if you want to export NetFlow data (otherwise, NetFlow data is visible in the cache, but is not exported)
- Configure NetFlow Version 9 if you want to use sampler option templates or view NetFlow sampler IDs

Restrictions for Using NetFlow Filtering or Sampling to Select Network Traffic to Track

Restrictions for NetFlow Input Filters

On Cisco 7500 platforms, the NetFlow Input Filters feature is supported only in distributed mode.

Restrictions for Random Sampled NetFlow

If full NetFlow is enabled on an interface, it takes precedence over Random Sampled NetFlow (which will thus have no effect). This means that you should disable full NetFlow on an interface before enabling Random Sampled NetFlow on that interface.

Enabling Random Sampled NetFlow on a physical interface does not automatically enable Random Sampled NetFlow on subinterfaces; you must explicitly configure it on subinterfaces. Also, disabling Random Sampled NetFlow on a physical interface (or a subinterface) does not enable full NetFlow. This restriction prevents the transition to full NetFlow from overwhelming the physical interface (or subinterface). If you want full NetFlow, you must explicitly enable it.

If you enable Random Sampled NetFlow with Version 5 data export, sampler option templates are not exported, and sampler IDs are exported in the least significant three bits of the last byte of the Version 5 record pad field. Use NetFlow Version 9 if you want to use sampler option templates or view NetFlow sampler IDs.

Information About Using NetFlow Filtering or Sampling to Select Network Traffic to Track

Before configuring NetFlow sampling or filtering, you should understand the following:

- Roadmap: Using NetFlow Filtering or Sampling to Select the Network Traffic to Track, page 3
- Filtering and Sampling of NetFlow Traffic, page 4
- NetFlow Input Filters: Flow Classification, page 6
- Random Sampled NetFlow: Sampling Mode, page 6
- Random Sampled NetFlow: The NetFlow Sampler, page 6

Roadmap: Using NetFlow Filtering or Sampling to Select the Network Traffic to Track

Table 1 provides a roadmap for this section that includes links to associated information and configuration instruction for selecting traffic of interest.

Table 1 Roadmap: Selecting the Network Traffic to Track Using Sampling and Filtering

Traffic of Interest	Links to Associated Information and Configuration Instructions
A specific subset of NetFlow traffic for the purpose of class-based traffic analysis and monitoring (including on-network or off-network traffic)	 Associated information: Filtering and Sampling of NetFlow Traffic, page 4 NetFlow Input Filters: Flow Classification, page 6 Prerequisites for NetFlow Input Filters, page 2 Restrictions for NetFlow Input Filters, page 2 Configuration instructions: Configuring NetFlow Input Filters to Reduce the Impact of NetFlow Data Export, page 7

Table 1 Roadmap: Selecting the Network Traffic to Track Using Sampling and Filtering (continued)

Traffic of Interest	Links to Associated Information and Configuration Instructions
Statistical sampling of network traffic for traffic engineering or capacity planning purposes	Associated information:
	Filtering and Sampling of NetFlow Traffic, page 4
	Random Sampled NetFlow: Sampling Mode, page 6
	Prerequisites for Random Sampled NetFlow, page 2
	Restrictions for Random Sampled NetFlow, page 2
	Configuration instructions:
	• Configuring NetFlow Input Filters to Reduce the Impact of NetFlow Data Export, page 7

Filtering and Sampling of NetFlow Traffic

NetFlow provides highly granular per-flow traffic statistics in a Cisco router. A flow is a unidirectional stream of packets that arrive at the router on the same subinterface, have the same source and destination IP addresses, Layer 4 protocol, TCP/UDP source and destination ports, and the same ToS (type of service) byte in the IP headers. The router accumulates NetFlow statistics in a NetFlow cache and can export them to an external device (such as the Cisco Networking Services (CNS) NetFlow Collection Engine) for further processing.

Full NetFlow accounts for all traffic entering the subinterface on which it is enabled. But in some cases, you might gather NetFlow data on only a subset of this traffic. The Random Sampled NetFlow feature and the NetFlow Input Filters feature each provide ways to limit incoming traffic to only traffic of interest for NetFlow processing. Random Sampled NetFlow provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of *n* sequential packets. The NetFlow Input Filters feature provides the capability to gather NetFlow data on only a specific user-defined subset of traffic.

Random Sampled NetFlow is more statistically accurate than Sampled NetFlow. NetFlow's ability to sample packets was first provided by a feature named Sampled NetFlow. The methodology that the Sampled NetFlow feature uses is *deterministic* sampling, which selects every *n*th packet for NetFlow processing on a per-interface basis. For example, if you set the sampling rate to 1 out of 100 packets, then Sampled NetFlow samples the 1st, 101st, 201st, 301st, and so on packets. Sampled NetFlow does not allow random sampling and thus can make statistics inaccurate when traffic arrives in fixed patterns.

The Random Sampled NetFlow algorithms are applied after input filtering.

Table 2 compares the NetFlow Input Filters feature and the NetFlow Random Sampled feature.

Table 2 Comparison of the NetFlow Input Filters Feature and the Random Sampled NetFlow Feature

Comparison Category	NetFlow Input Filters Feature	Random Sampled NetFlow Feature
Brief description	This feature enables you to gather NetFlow data on only a specific subset of traffic. You do this by creating filters to select flows for NetFlow processing. For example, you can select flows from a specific group of hosts. This feature also lets you select various sampling rates for selected flows.	This feature provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of <i>n</i> sequential packets (<i>n</i> is a user-configurable parameter). Packets are sampled as they arrive (before any NetFlow cache entries are made for those packets).
Main uses	You can use this feature for class-based traffic analysis and monitoring on-network or off-network traffic.	You can use this feature for traffic engineering, capacity planning, and applications where full NetFlow is not needed for an accurate view of network traffic.
Export format support	This feature is supported in the Version 5 and Version 9 NetFlow export formats.	This feature is supported in the Version 5 and Version 9 NetFlow export formats.
Cisco IOS release support	12.3(4)T.	12.3(2)T, 12.2(18)S, and 12.0(26)S.
Subinterface support	You can configure NetFlow Input Filters per subinterface as well as per physical interface. You can select more than one filter per subinterface and have all of the filters run simultaneously.	You can configure the Random Sampled NetFlow feature per subinterface as well as per physical interface. Traffic is collected only on the subinterfaces on which Random Sampled NetFlow is configured. As with full NetFlow, enabling Random Sampled NetFlow on a physical interface does not enable Random Sampled NetFlow on subinterfaces automatically—you
Memory impact This feature requires no additional memory. It allows you to use a smaller NetFlow cache than full NetFlow, because it significantly reduces the number of flows. This feature requires an insignificant amount of memory for each configured NetFlow sampler.		must explicitly configure it on the subinterfaces. This feature allows a smaller NetFlow cache than full NetFlow, because it significantly reduces the number of flows. This feature requires an insignificant amount of memory for each configured NetFlow sampler.
Performance impact	Accounting of classified traffic saves router resources by reducing the number of flows being processed and exported. The amount of bandwidth saved depends on the usage and the class-map criteria. However, performance might degrade depending on the number and complexity of class maps configured in a policy.	Statistical traffic sampling substantially reduces consumption of router resources (especially CPU resources) while providing valuable NetFlow data. This feature substantially reduces the impact of NetFlow data export on interface traffic. For example, a sampling rate of 1 out of 100 packets reduces the export of NetFlow data by about 50 percent.

NetFlow Input Filters: Flow Classification

For the NetFlow Input Filters feature, classification of packets can be based on any of the following: IP source and destination addresses, Layer 4 protocol and port numbers, incoming interface, MAC address, IP Precedence, DSCP value, Layer 2 information (such as Frame-Relay DE bits or Ethernet 802.1p bits), and Network-Based Application Recognition (NBAR) information. The packets are classified (filtered) on the above criteria, and flow accounting is applied to them on subinterfaces.

The filtering mechanism uses the Modular QoS Command-Line Interface (MQC) to classify flows. You can create multiple filters with matching samplers on a per-subinterface basis. For example, you can subdivide subinterface traffic into multiple classes based on type of service (ToS) values or destination prefixes (or both). For each class, you can also configure sampling at a different rate, using higher rates for higher-priority classes of traffic and lower rates for lower-priority ones.

MQC has many policies (actions) such as bandwidth rate and queuing management. These policies are applied only if a packet matches a criterion in a class map that is applied to the subinterface. A class map contains a set of match clauses and instructions on how to evaluate the clauses and acts as a filter for the policies, which are applied only if a packet's content satisfies the match clause. The NetFlow Input Filters feature adds NetFlow accounting to the MQC infrastructure, which means that flow accounting is done on a packet only if it satisfies the match clauses.

Two types of filter are available:

- ACL-based flow-mask filters
- Fields of filter (source IP address, destination IP address, source application port, destination application port, port protocol, ToS bits, and TCP flags)

Random Sampled NetFlow: Sampling Mode

Sampling mode makes use of an algorithm that selects a subset of traffic for NetFlow processing. In the random sampling mode that the Random Sampled NetFlow feature uses, incoming packets are randomly selected so that one out of each n sequential packets is selected on average for NetFlow processing. For example, if you set the sampling rate to 1 out of 100 packets, then NetFlow might sample the 5th packet and then the 120th, 199th, 302nd, and so on. This sample configuration provides NetFlow data on 1 percent of total traffic. The n value is a parameter from 1 to 65535 packets that you can configure.

Random Sampled NetFlow: The NetFlow Sampler

A NetFlow sampler map defines a set of properties (such as the sampling rate and NetFlow sampler name) for NetFlow sampling. Each NetFlow sampler map can be applied to one or many subinterfaces as well as physical interfaces. You can define up to eight NetFlow sampler maps.

For example, you can create a NetFlow sampler map named mysampler1 with the following properties: random sampling mode and a sampling rate of 1 out of 100 packets. This NetFlow sampler map can be applied to any number of subinterfaces, each of which would refer to mysampler1 to perform NetFlow sampling. Traffic from these subinterfaces is merged (from a sampling point of view). This introduces even more "randomness" than random per-subinterface NetFlow sampling does, but statistically it provides the same sampling rate of 1 out of 100 packets for each participating subinterface.

The sampling in random sampled NetFlow is done by NetFlow samplers. A NetFlow sampler is defined as an instance of a NetFlow sampler map that has been applied to a physical interface or subinterface. If full NetFlow is configured on a physical interface, it overrides random sampled NetFlow on all subinterfaces of this physical interface.

How to Configure NetFlow Filtering or Sampling

Perform the procedures in this section to configure NetFlow filtering or sampling:

- Configuring NetFlow Input Filters to Reduce the Impact of NetFlow Data Export, page 7
- Configuring Random Sampled NetFlow to Reduce the Impact of NetFlow Data Export, page 12

You need to configure input filtering before you apply the random sampled netflow algorithms.

Configuring NetFlow Input Filters to Reduce the Impact of NetFlow Data Export

Perform the following tasks to configure NetFlow input filters. Configuring NetFlow input filters reduces the impact of NetFlow data export.

- Creating a Class Map for a Policy Map for NetFlow Input Filtering, page 7 (required)
- Creating a Sampler Map for a Policy Map for NetFlow Input Filtering, page 9 (required)
- Creating a Class-Based Policy Containing NetFlow Sampling Actions, page 10 (required)
- Applying a Policy Containing NetFlow Sampling Actions to an Interface, page 11 (required)

Creating a Class Map for a Policy Map for NetFlow Input Filtering

Perform the steps in this required task to create a class map for a policy map for NetFlow input filtering.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. class-map class-map-name [match-all | match-any]
- 4. match access-group access-group
- 5. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	class-map class-map-name [match-all match-any]	(Required) Creates a class map to be used for matching packets to a specified class.
	<pre>Example: Router(config)# class-map my_high_importance_class</pre>	• The <i>class-map-name</i> argument is the name of the class for the class map. The name can be a maximum of 40 alphanumeric characters. The class name is used for both the class map and for configuring policy for the class in the policy map.
		• The match-all match-any keywords determine how packets are evaluated when multiple match criteria exist. Packets must either meet all of the match criteria (match-all) or only one of the match criteria (match-any) to be considered a member of the class.
		Entering the class-map command enables class-map configuration mode, in which you can enter one of the match commands to configure the match criteria for this class.
Step 4	match access-group access-group Example:	(Required) Configures the match criteria for a class map on the basis of the specified access control list (ACL).
	Router(config-cmap)# match access-group 101	• The <i>access-group</i> argument is a numbered ACL whose contents are used as the match criteria against which packets are checked to determine if they belong to this class. An ACL number can be a number from 1 to 2699.
Step 5	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	Example: Router(config-cmap)# end	

Creating a Sampler Map for a Policy Map for NetFlow Input Filtering

Perform the steps in this required task to create a sampler map for a policy map for NetFlow input filtering.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. flow-sampler-map sampler-map-name
- 4. mode random one-out-of packet-interval
- 5. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	flow-sampler-map sampler-map-name	(Required) Defines a statistical sampling NetFlow export flow sampler map.
	<pre>Example: Router(config)# flow-sampler-map my_high_sampling</pre>	• The <i>sampler-map-name</i> argument is the name of the flow sampler map to be defined.
		Entering the flow-sampler-map command enables the flow sampler configuration mode.
Step 4	mode random one-out-of packet-interval	(Required) Specifies a statistical sampling NetFlow export random sampling mode and a packet interval.
	<pre>Example: Router(config-sampler-map)# mode random one-out-of</pre>	• The random keyword specifies that sampling uses the random sampling mode.
	100	• The <i>one-out-of</i> packet-interval argument-keyword pair specifies the packet interval (one out of every <i>n</i> packets) from which to sample. For <i>n</i> , you can specify from 1 to 65535 (packets).
Step 5	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	Example:	
	Router(config-sampler-map)# end	

Creating a Class-Based Policy Containing NetFlow Sampling Actions

Perform the steps in this required task to create a class-based policy containing NetFlow sampling actions.

You can assign only one NetFlow input filters sampler to a class. Assigning a subsequent NetFlow input filters sampler to a class overwrites the previous sampler. Removing a NetFlow sampler map also removes the NetFlow input filters sampler from the corresponding policy map.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. policy-map policy-map-name
- 4. class {class-name | class-default}
- **5. netflow-sampler** *map-name*
- 6. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	policy-map policy-map-name	(Required) Creates or modifies a policy map that can be attached to one or more interfaces to specify a
	Example:	service policy.
	Router(config)# policy-map mypolicymap	• The <i>policy-map-name</i> argument is the name of the policy map. The name can be a maximum of 40 alphanumeric characters.
		Entering the policy-map command enables quality of service (QoS) policy-map configuration mode, in which you can configure or modify the class policies for that policy map.

	Command or Action	Purpose
Step 4	<pre>class {class-name class-default} Example: Router(config-pmap)# class my_high_importance_class</pre>	(Required) Specifies the name of the class whose policy you want to create or change or specifies the default class (commonly known as the class-default class) before you configure its policy.
		• The <i>class-name</i> argument is the name of the class for which you want to configure or modify policy.
		The class-default keyword specifies the default class so that you can configure or modify its policy.
		Entering the class command enables QoS policy-map class configuration mode.
Step 5	netflow-sampler sampler-map-name	(Required) Enables a NetFlow input filter sampler.
	Example:	• The <i>sampler-map-name</i> argument is the name of the NetFlow sampler map to apply to the class.
	<pre>Router(config-pmap-c)# netflow-sampler high_sampling</pre>	You can assign only one NetFlow input filter sampler to a class. Assigning another NetFlow input filter sampler to a class overwrites the previous one.
Step 6	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	Example:	
	Router(config-pmap-c)# end	

Applying a Policy Containing NetFlow Sampling Actions to an Interface

Perform the steps in this required task to apply a policy containing NetFlow sampling actions to an interface.

After you define a service policy with the **policy-map** command, you use the **service-policy** command in interface configuration mode to attach it to one or more interfaces, thus specifying the service policy for those interfaces. Although you can assign the same service policy to multiple interfaces, each interface can have only one service policy attached. You can apply the service policy only in the input direction.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. **interface** *interface-type interface-number*
- **4. service-policy** {**input** | **output**} *policy-map-name*
- 5. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>interface interface-type interface-number</pre>	(Required) Specifies the interface and enters interface configuration mode.
	Example:	
	Router(config)# interface POS 1/0	
Step 4	service-policy {input output} policy-map-name	(Required) Attaches a policy map to an input interface or virtual circuit (VC), or an output interface or VC, to be used as the service policy for that interface or VC.
	Example:	• •
	<pre>Router(config-if)# service-policy input mypolicymap</pre>	• The input keyword attaches the specified policy map to the input interface or input VC.
		• The output keyword attaches the specified policy map to the output interface or output VC.
		• The <i>policy-map-name</i> is the name of a service policy map (created through use of the policy-map command) to be attached. The name can be a maximum of 40 alphanumeric characters.
Step 5	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

Troubleshooting Tips

Use the **debug flow-sampler class-based** command to display debugging output for NetFlow input filters.

Configuring Random Sampled NetFlow to Reduce the Impact of NetFlow Data Export

Perform the following required and optional tasks to configure and verify the configuration for the Random Sampled NetFlow feature:

- Defining a NetFlow Sampler Map (Required), page 13
- Applying a NetFlow Sampler Map to an Interface (Required), page 13
- Verifying the Configuration of Random Sampled NetFlow (Optional), page 14

Defining a NetFlow Sampler Map (Required)

Perform the following task to define a NetFlow sampler map.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. flow-sampler-map sampler-map-name
- 4. mode random one-out-of sampling-rate
- 5. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	<pre>Example: Router> enable</pre>	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	flow-sampler-map sampler-map-name	(Required) Defines a NetFlow sampler map and enters flow sampler map configuration mode.
	<pre>Example: Router(config) # flow-sampler-map mysampler1</pre>	• The <i>sampler-map-name</i> argument is the name of the NetFlow sampler map to be defined.
Step 4	mode random one-out-of sampling-rate	(Required) Enables random mode and specifies a sampling rate for the NetFlow sampler.
	<pre>Example: Router(config-sampler)# mode random one-out-of</pre>	• The random keyword specifies that sampling uses the random mode.
	100	• The one-out-of <i>sampling-rate</i> keyword-argument pair specifies the sampling rate (one out of every <i>n</i> packets) from which to sample. For <i>n</i> , you can specify from 1 to 65535 (packets).
Step 5	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-sampler)# end</pre>	

Applying a NetFlow Sampler Map to an Interface (Required)

Perform the following task to apply a NetFlow sampler map to an interface.

You can apply a NetFlow sampler map to a physical interface (or a subinterface) to create a NetFlow sampler.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. **interface** *interface-type interface-number*
- 4. flow-sampler sampler-map-name
- 5. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>interface interface-type interface-number</pre>	(Required) Specifies the interface and enters interface configuration mode.
	<pre>Example: Router(config)# ethernet 1/0.2</pre>	
Step 4	flow-sampler sampler-map-name	(Required) Applies a NetFlow sampler map to the interface to create the NetFlow sampler.
	<pre>Example: Router(config-if)# flow-sampler mysampler1</pre>	• The <i>sampler-map-name</i> argument is the name of the NetFlow sampler map to apply to the interface.
Step 5	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

Verifying the Configuration of Random Sampled NetFlow (Optional)

Perform the following tasks to verify the configuration of random sampled NetFlow.

SUMMARY STEPS

- 1. show flow-sampler
- 2. show ip cache verbose flow
- 3. show ip flow export template

DETAILED STEPS

Step 1 show flow-sampler

Use this command to display attributes (including mode, sampling rate, and number of sampled packets) of one or all Random Sampled NetFlow samplers to verify the sampler configuration. For example:

Router# show flow-sampler

```
Sampler : mysampler1, id : 1, packets matched : 10, mode : random sampling mode
  sampling interval is : 100

Sampler : myflowsampler2, id : 2, packets matched : 5, mode : random sampling mode
  sampling interval is : 200
```

To verify attributes for a particular NetFlow sampler, use the **show flow-sampler** sampler-map-name command. For example, enter the following for a NetFlow sampler named mysampler1:

```
Router# show flow-sampler mysampler1

Sampler: mysampler1, id: 1, packets matched: 0, mode: random sampling mode sampling interval is: 100
```

Step 2 show ip cache verbose flow

Use this command to display additional NetFlow fields in the header when Random Sampled NetFlow is configured. For example:

Router# show ip cache verbose flow . . . SrcIf SrcIPaddress DstIf DstIPaddress Pr TOS Flgs Pkts Port Msk AS Port Msk AS NextHop B/Pk Active BGP: BGP NextHop Et1/0 8.8.8.8 E+0/0* 9.9.9.9 01 00 10 3 0000 /8 302 0800 /8 300 3.3.3.3 100 BGP: 2.2.2.2 Sampler: 1 Class: 1 FFlags: 01

This example shows the NetFlow output of the **show ip cache verbose flow** command in which the sampler, class-id, and general flags are set. What is displayed for a flow depends on what flags are set in the flow. If the flow was captured by a sampler, the output shows the sampler ID. If the flow was marked by MQC, the display includes the class ID. If any general flags are set, the output includes the flags.

NetFlow flags (FFlags) that might appear in the show ip cache verbose flow command output are:

- FFlags: 01 (#define FLOW_FLAGS_OUTPUT 0x0001)—Egress flow
- FFlags: 02 (#define FLOW_FLAGS_DROP 0x0002)—Dropped flow (for example, dropped by an ACL)
- FFlags: 04 (#define FLOW_FLAGS_MPLS 0x0004)—MPLS flow
- FFlags: 08 (#define FLOW_FLAGS_IPV6 0x0008)—IPv6 flow
- FFlags: 10 (#define FLOW FLAGS RSVD 0x0010)—Reserved

IPv6 and RSVD FFlags are seldom used. If FFlags is zero, the line is omitted from the output. If multiple flags are defined (logical ORed together), then both sets of flags are displayed in hexadecimal format.

Step 3 show ip flow export template

Use this command to display the statistics for the NetFlow data export (such as template timeout and refresh rate) for the template-specific configurations. For example:

```
Router# show ip flow export template
```

```
Template Options Flag = 0
   Total number of Templates added = 0
   Total active Templates = 0
```

```
Flow Templates active = 0
Flow Templates added = 0
Option Templates active = 0
Option Templates added = 0
Template ager polls = 0
Option Template ager polls = 0
Main cache version 9 export is enabled
Template export information
Template timeout = 30
Template refresh rate = 20
Option export information
Option timeout = 30
Option refresh rate = 20
```

Troubleshooting Tips

Use the debug flow-sampler command to display debugging output for Random Sampled NetFlow.

Configuration Examples for Configuring NetFlow Filtering and Sampling

This section contains the following examples for configuring NetFlow filtering and sampling:

- Configuring NetFlow Input Filters to Reduce the Impact of NetFlow Data Export: Examples, page 16
- Configuring Random Sampled NetFlow to Reduce the Impact of NetFlow Data Export: Examples, page 18

Configuring NetFlow Input Filters to Reduce the Impact of NetFlow Data Export: Examples

This section contains the following configuration examples:

- Creating a Class Map for a Policy Map for NetFlow Input Filtering: Example, page 17
- Creating a Sampler Map for a Policy Map for NetFlow Input Filtering: Example, page 17
- Creating a Policy Containing NetFlow Sampling Actions: Example, page 17
- Applying a Policy to an Interface: Example, page 18

Creating a Class Map for a Policy Map for NetFlow Input Filtering: Example

The following example shows how to create a class map for a policy map for NetFlow input filtering. In the example, class maps named my_high_importance_class and my_medium_importance_class are created:

```
configure terminal
!
class-map my_high_importance_class
match access-group 101
exit
!
class-map my_medium_importance_class
match access-group 102
end
```

Creating a Sampler Map for a Policy Map for NetFlow Input Filtering: Example

The following example shows how to create a sampler map for a policy map for NetFlow input filtering. In the following example, sampler maps called my_high_sampling, my_medium sampling, and my_low_sampling are created for use with a policy map for NetFlow input filtering:

```
configure terminal
!
flow-sampler-map my_high_sampling
mode random one-out-of 1
exit
!
flow-sampler-map my_medium_sampling
mode random one-out-of 100
exit
!
flow-sampler-map my_low_sampling
mode random one-out-of 1000
end
```

Creating a Policy Containing NetFlow Sampling Actions: Example

The following example shows how to create a class-based policy containing three NetFlow sampling actions. In this example, a sampling action named my_high_sampling is applied to a class named my_high_importance_class, a sampling action named my_medium_sampling is applied to a class named my_medium_importance_class, and a sampling action named my_low_sampling is applied to the default class.

```
configure terminal
!
policy-map mypolicymap
  class my_high_importance_class
  sampler my_high_sampling
  exit
!
class my_medium_importance_class
  netflow-sampler my_medium_sampling
  exit
!
class class-default
  netflow-sampler my_low_sampling
end
```

Applying a Policy to an Interface: Example

The following example shows how to apply a policy containing NetFlow sampling actions to an interface. In this example, a policy named mypolicymap is attached to interface POS1/0 and also to interface ATM2/0:

```
configure terminal
!
interface POS1/0
service-policy input mypolicymap
exit
!
interface ATM2/0
service-policy input mypolicymap
```

Configuring Random Sampled NetFlow to Reduce the Impact of NetFlow Data Export: Examples

This section contains the following configuration examples:

- Defining a NetFlow Sampler Map: Example, page 18
- Applying a NetFlow Sampler Map to an Interface: Example, page 18

Defining a NetFlow Sampler Map: Example

The following example shows how to define a NetFlow sampler map named mysampler1:

```
configure terminal
!
flow-sampler-map mysampler1
  mode random one-out-of 100
  end
```

Applying a NetFlow Sampler Map to an Interface: Example

The following example shows how to enable CEF switching and apply a NetFlow sampler map named mysampler1 to Ethernet interface 1 to create a NetFlow sampler on that interface:

```
configure terminal
!
ip cef
!
interface ethernet 1/0
  flow-sampler mysampler1
end
```

Additional References

The following sections provide references related to configuring NetFlow filtering and sampling.

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
The minimum information about and tasks required for configuring NetFlow and NetFlow Data Export	"Getting Started with Configuring NetFlow and NetFlow Data Export"
Tasks for configuring NetFlow to capture and export network traffic data	"Configuring NetFlow and NetFlow Data Export"
Tasks for configuring Configuring MPLS Aware NetFlow	Configuring MPLS Aware NetFlow
Tasks for configuring MPLS egress NetFlow accounting	Configuring MPLS Egress NetFlow Accounting and Analysis
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow aggregation caches	"Configuring NetFlow Aggregation Caches"
Tasks for configuring NetFlow BGP next hop support	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
Tasks for configuring NetFlow multicast support	"Configuring NetFlow Multicast Accounting"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring NetFlow Layer 2 and Security Monitoring Exports	"NetFlow Layer 2 and Security Monitoring Exports"
Tasks for configuring the SNMP NetFlow MIB	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
Tasks for configuring the NetFlow MIB and Top Talkers feature	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
. 11	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Technical Support website contains	http://www.cisco.com/techsupport
thousands of pages of searchable technical content,	
including links to products, technologies, solutions,	
technical tips, and tools. Registered Cisco.com users	
can log in from this page to access even more content.	

Glossary

ACL—Access control list. A roster of users and groups of users kept by a router. The list is used to control access to or from the router for a number of services.

BGP—Border Gateway Protocol. Interdomain routing protocol that replaces Exterior Gateway Protocol (EGP). A BGP system exchanges reachability information with other BGP systems. BGP is defined by RFC 1163.

BGP next hop—IP address of the next hop to be used to reach a certain destination.

CEF—Cisco Express Forwarding. Layer 3 IP switching technology that optimizes network performance and scalability for networks with large and dynamic traffic patterns.

dCEF—Distributed Cisco Express Forwarding. A type of CEF switching in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

fast switching—Cisco feature in which a route cache is used to expedite packet switching through a router.

flow—Unidirectional stream of packets between a given source and destination. Source and destination are each defined by a network-layer IP address and transport-layer source and destination port numbers.

MQC—Modular QoS command-line interface. A CLI structure that lets you create traffic polices and attach them to interfaces. A traffic policy contains a traffic class and one or more QoS features. The QoS features in the traffic policy determine how the classified traffic is treated.

NBAR—Network-Based Application Recognition. A classification engine in Cisco IOS software that recognizes a wide variety of applications, including web-based applications and client/server applications that dynamically assign Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) port numbers. After the application is recognized, the network can invoke specific services for that application. NBAR is a key part of the Cisco Content Networking architecture and works with QoS features to let you use network bandwidth efficiently.

NetFlow—Cisco IOS security and accounting feature that maintains per-flow information.

NetFlow sampler—A set of properties that are defined in a NetFlow sampler map that has been applied to at least one physical interface or subinterface.

NetFlow sampler map—The definition of a set of properties (such as the sampling rate) for NetFlow sampling.

NetFlow v9—NetFlow export format Version 9. A flexible and extensible means for carrying NetFlow records from a network node to a collector. NetFlow Version 9 has definable record types and is self-describing for easier NetFlow Collection Engine configuration.

ToS—type of service. Second byte in the IP header that indicates the desired quality of service for a specific datagram.

Feature Information for Using NetFlow Filtering or Sampling to Select Network Traffic to Track

Table 3 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Release 12.2(1) or 12.0(3)S or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 3 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 3 Feature Information for Using NetFlow Filtering or Sampling to Select Network Traffic to Track

Feature Name	Releases	Feature Configuration Information
NetFlow Input Filters	12.3(4)T, 12.2(25)S 12.2(27)SBC	The NetFlow Input Filters feature provides NetFlow data for a specific subset of traffic by letting you create filters to select flows for NetFlow processing. For example, you can select flows from a specific group of hosts. This feature also lets you select various sampling rates for selected flows. The NetFlow Input Filters feature is used, for example, for class-based traffic analysis and monitoring on-network or off-network traffic.
		The following sections provide information about this feature:
		• Roadmap: Using NetFlow Filtering or Sampling to Select the Network Traffic to Track, page 3
		• Filtering and Sampling of NetFlow Traffic, page 4
		• NetFlow Input Filters: Flow Classification, page 6
		• Configuring NetFlow Input Filters to Reduce the Impact of NetFlow Data Export, page 7
		The following commands were introduced or modified by this feature: netflow-sampler and debug flow-sampler .

Table 3 Feature Information for Using NetFlow Filtering or Sampling to Select Network Traffic to Track (continued)

Feature Name	Releases	Feature Configuration Information							
Random Sampled NetFlow	12.3(4)T, 12.2(18)S, 12.0(26)S, 12.2(27)SBC Cisco IOS XE Release 2.1	Random Sampled NetFlow provides NetFlow data for a subset of traffic in a Cisco router by processing only one randomly selected packet out of <i>n</i> sequential packets (<i>n</i> is a user-configurable parameter). Packets are sampled as they arrive (before any NetFlow cache entries are made for those packets). Statistical traffic sampling substantially reduces consumption of router resources (especially CPU resources) while providing valuable NetFlow data. The main uses of Random Sampled NetFlow are traffic engineering, capacity planning, and applications where full NetFlow is not needed for an accurate view of network traffic.							
		In Cisco IOS XE Release 2.1, this feature was introduced on Cisco ASR 1000 Series Routers.							
		The following sections provide information about this feature:							
		• Roadmap: Using NetFlow Filtering or Sampling to Select the Network Traffic to Track, page 3							
		• Filtering and Sampling of NetFlow Traffic, page 4							
		• Random Sampled NetFlow: Sampling Mode, page 6							
		• Random Sampled NetFlow: The NetFlow Sampler, page 6							
		Configuring Random Sampled NetFlow to Reduce the Impact of NetFlow Data Export, page 12							
		The following commands were introduced by this feature: debug flow-sampler, flow-sampler, flow-sampler-map, mode (flow sampler map configuration), and show flow-sampler.							
		The following command was modified by this feature: ip flow-export.							

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0804R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Feature Information for Using NetFlow Filtering or Sampling to Select Network Traffic to Track

NetFlow Layer 2 and Security Monitoring Exports

This document contains information about and instructions for configuring NetFlow Layer 2 and Security Monitoring Exports. Configuring NetFlow Layer 2 and Security Monitoring Exports improves your ability to detect and analyze network threats such as denial of service (DoS) attacks by increasing the number of fields from which NetFlow can capture values.

NetFlow is a Cisco IOS technology that provides statistics on packets flowing through the router. NetFlow is the standard for acquiring IP operational data from IP networks. NetFlow provides network and security monitoring, network planning, traffic analysis, and IP accounting.

Module History

This module was first published on June 19th, 2006, and last updated on June 19th, 2006.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all features. To find information about feature support and configuration, use the "Feature Information for NetFlow Layer 2 and Security Monitoring Exports" section on page 35.

Contents

- Prerequisites for NetFlow Layer 2 and Security Monitoring Exports, page 2
- Restrictions for NetFlow Layer 2 and Security Monitoring Exports, page 2
- Information About NetFlow Layer 2 and Security Monitoring Exports, page 2
- How to Configure NetFlow Layer 2 and Security Monitoring Exports, page 14
- Configuration Examples for NetFlow Layer 2 and Security Monitoring Exports, page 18
- Additional References, page 32

Prerequisites for NetFlow Layer 2 and Security Monitoring Exports

Before you configure NetFlow Layer 2 and Security Monitoring Exports You need to understand NetFlow accounting and how to configure your router to capture IP traffic accounting statistics using NetFlow. See the "Cisco IOS NetFlow Overview" and "Configuring NetFlow and NetFlow Data Export" modules for more details.

NetFlow and Cisco Express Forwarding (CEF), distributed CEF (dCEF), or fast switching must be configured on your system.

Restrictions for NetFlow Layer 2 and Security Monitoring Exports

If you want to export the data captured with the NetFlow Layer 2 and Security Monitoring feature you must configure Netflow to use the NetFlow Version 9 data export format.

Information About NetFlow Layer 2 and Security Monitoring Exports

To configure NetFlow Layer 2 and Security Monitoring Exports, you should understand the following concept:

NetFlow Layer 2 and Security Monitoring

NetFlow Layer 2 and Security Monitoring

The Layer 2 and Layer 3 fields supported by the NetFlow Layer 2 and Security Monitoring Exports feature increase the amount of information that can be obtained by NetFlow about the traffic in your network. You can use this new information for applications such as traffic engineering and usage-based billing.

The Layer 3 IP header fields that the NetFlow Layer 2 and Security Monitoring Exports feature captures the values of are:

- Time-to-Live field
- · Packet Length field
- ID field
- ICMP type and code fields
- Fragment offset

See the "Layer 3 Information Capture Using NetFlow Layer 2 and Security Monitoring Exports" section for more information on these Layer 3 fields.

The Layer 2 fields that NetFlow Layer 2 and Security Monitoring Exports feature captures the values of are:

- Source MAC address field from frames that are received by the NetFlow router
- Destination MAC address field from frames that are transmitted by the NetFlow router
- VLAN ID field from frames that are received by the NetFlow router
- VLAN ID field from frames that are transmitted by the NetFlow router

See the "Layer 2 Information Capture Using NetFlow Layer 2 and Security Monitoring Exports" section for more information on these Layer 2 fields.

The Layer 3 fields captured by the NetFlow Layer 2 and Security Monitoring Exports feature improve NetFlow's capabilities for identifying DoS attacks. The Layer 2 fields captured by the NetFlow Layer 2 and Security Monitoring Exports feature can help you identify the path that the DoS attack is taking through the network.

The Layer 2 and Layer 3 fields captured by the NetFlow Layer 2 and Security Monitoring Exports feature are not key fields. They provide additional information about the traffic in an existing flow. Changes in the values of NetFlow key fields such as the source IP address from one packet to the next packet result in the creation of a new flow. For example if the first packet captured by NetFlow has a source IP address of 10.34.0.2 and the second packet captured by NetFlow has a source IP of 172.16.213.65, NetFlow will create two separate flows.

Many DoS attacks consist of an attacker sending the same type of IP datagram over and over again in an attempt to overwhelm the target systems. In such cases the incoming traffic often has similar characteristics such as the same values in each datagram for one or more of the fields that the NetFlow Layer 2 and Security Monitoring Exports feature can capture.

There is no easy way to identify the originator of many DoS attacks because the IP source address of the device sending the traffic is usually forged. However by capturing the MAC address and VLAN-ID fields using the NetFlow Layer 2 and Security Monitoring Exports feature, you can easily trace the traffic back through the network to the router that it is arriving on. If the router that the traffic is arriving on supports NetFlow, you can configure the NetFlow Layer 2 and Security Monitoring Exports feature on it to identify the interface where the traffic is arriving. Figure 1 shows an example of an attack in progress.

DoS Attack arriving from the Internet Email server Host A Router A Switch Switch G Host B NetFlow router Internet Router B Switch B Switch A Switch D Switch E Switch C Router C Router D CNS NetFlow collection engine

Figure 1 DoS Attack Arriving over the Internet

You can analyze the data captured by NetFlow directly from the router using the **show ip cache verbose flow** command or with the CNS NetFlow Collector Engine.

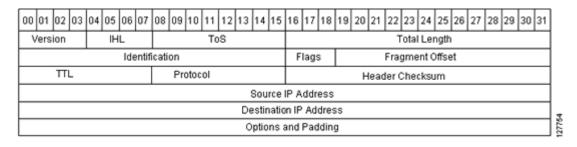
Once you have concluded that a DoS attack is taking place by analyzing the Layer 3 fields in the NetFlow flows, you can analyze the Layer 2 fields in the flows to discover the path that the DoS attack is taking through the network.

An analysis of the data captured by the NetFlow Layer 2 and Security Monitoring Exports feature for the scenario shown in Figure 1 indicates that the DoS attack is arriving on Router C because the upstream MAC address is from the interface that connects Router C to Switch A. It is also evident that there are no routers between the target host (the email server) and the NetFlow router because the destination MAC address of the DoS traffic that the NetFlow router is forwarding to the email server is the MAC address of the email server.

You can find out the MAC address that Host C is using to send the traffic to Router C by configuring the NetFlow Layer 2 and Security Monitoring Exports feature on Router C. The source MAC address will be from Host C. The destination MAC address will be for the interface on the NetFlow router.

Once you know the MAC address that Host C is using and the interface on Router C that Host C's DoS attack is arriving on, you can mitigate the attack by reconfiguring Router C to block Host C's traffic. If Host C is on a dedicated interface you, disable the interface. If Host C is using an interface that carries traffic from other users, you must configure your firewall to block Host C's traffic but still allow the traffic from the other users to flow through Router C.

The "Configuration Examples for NetFlow Layer 2 and Security Monitoring Exports" section has two examples for using the NetFlow Layer 2 and Security Monitoring Exports feature to identify an attack in progress and the path that the attack is taking through a network.


Layer 3 Information Capture Using NetFlow Layer 2 and Security Monitoring Exports

The NetFlow Layer 2 and Security Monitoring Exports feature has support for capturing five fields from Layer 3 IP traffic in a flow:

- Time-to-Live field
- · Packet Length field
- ID field
- ICMP type and code
- Fragment offset

Figure 2 shows the fields in an IP packet header. Figure 3 shows the fields in an ICMP datagram. ICMP datagrams are carried in the data area of an IP datagram, after the IP header.

Figure 2 IP Packet Header Fields

Field	Description The version of the IP protocol. If this field is set to 4 it is an IPv4 datagram. If this field is set to 6 it is an IPv6 datagram.							
Version								
	Note The IPv6 header has a different structure than an IPv4 header.							
IHL (Internet Header Length)	Internet Header Length is the length of the internet header in 32-bit word and thus points to the beginning of the data.							
	Note The minimum value for a correct header is 5.							
ToS	ToS provides an indication of the abstract parameters of the quality of service desired. These parameters are to be used to guide the selection of the actual service parameters when a networking device transmits a datagram through a particular network.							
Total Length	Total length is the length of the datagram, measured in octets, including internet header and data.							

Field	Description
Identification (ID)	The value in the ID field is entered by the sender. All of the fragments of an IP datagram have the same value in the ID field. Subsequent IP datagrams from the same sender will have different values in the ID field.
	It is very common for a host to be receiving fragmented IP datagrams from several senders concurrently. It is also common for a host to be receiving multiple IP datagrams from the same sender concurrently.
	The value in the ID field is used by the destination host to ensure that the fragments of an IP datagram are assigned to the same packet buffer during the IP datagram reassembly process. The unique value in the ID field is also used to prevent the receiving host from mixing together IP datagram fragments of different IP datagrams from the same sender during the IP datagram reassembly process.
Flags	A sequence of 3 bits used to set and track IP datagram fragmentation parameters.
	• 001 = The IP datagram can be fragmented. There are more fragments of the current IP datagram in transit.
	• 000 = The IP datagram can be fragmented. This is the last fragment of the current IP datagram.
	• 010 = The IP Datagram cannot be fragmented. This is the entire IP datagram.
Fragment Offset	This field indicates where in the datagram this fragment belongs.
TTL (Time-to-Live)	This field indicates the maximum time the datagram is allowed to remain in the internet system. If this field contains the value 0, then the datagram must be destroyed. This field is modified in internet header processing. The time is measured in units of seconds, but since every module that processes a datagram must decrease the TTL by at least 1 even if it processes the datagram in less than a second, the TTL must be thought of only as an upper bound on the time a datagram can exist. The intention is to cause undeliverable datagrams to be discarded, and to bound the maximum datagram lifetime.
Protocol	Indicates the type of transport packet included in the data portion of the IP datagram. Common values are:
	1 = ICMP
	6 = TCP
	17 = UDP
Header checksum	A checksum on the header only. Since some header fields, such as the time-to-live field, change every time an IP datagram is forwarded, this value is recomputed and verified at each point that the internet header is processed.
Source IP Address	IP address of the sending station.

Field	Description
Destination IP Address	IP address of the destination station.
Options and Padding	The options and padding may or may not appear or not in datagrams. If they do appear, they must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular datagram, not their implementation.

Figure 3 ICMP Datagram

	00 0	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	Type							Code							ICMP Header Checksum																	
Γ	Data																															

Table 2 ICMP Packet Format

Туре	Name	Codes
0	Echo reply	0—None
1	Unassigned	_
2	Unassigned	_
3	Destination unreachable	0—Net unreachable.
		1—Host unreachable.
		2—Protocol unreachable.
		3—Port unreachable.
		4—Fragmentation needed and DF bit set.
		5—Source route failed.
		6—Destination network unknown.
		7—Destination host unknown.
		8—Source host isolated.
		9—Communication with destination network is administratively prohibited.
		10—Communication with destination host is administratively prohibited.
		11—Destination network unreachable for ToS.
		12—Destination host unreachable for ToS.
4	Source quench	0—None.

Table 2 ICMP Packet Format (continued)

Туре	Name	Codes
5	Redirect	0—None.
		0—Redirect datagram for the network.
		1—Redirect datagram for the host.
		2—Redirect datagram for the TOS and network.
		3—Redirect datagram for the TOS and host.
6	Alternate host address	0—Alternate address for host.
7	Unassigned	_
8	Echo	0—None.
9	Router advertisement	0—None.
10	Router selection	0—None.
11	Time Exceeded	0—Time to live exceeded in transit.
12	Parameter problem	0—Pointer indicates the error.
		1—Missing a required option.
		2—Bad length.
13	Timestamp	0—None.
14	Timestamp reply	0—None.
15	Information request	0—None.
16	Information reply	0—None.
17	Address mask request	0—None.
18	Address mask reply	0—None.
19	Reserved (for security)	_
20–29	Reserved (for robustness experiment)	
30	Trace route	_
31	Datagram conversion error	_
32	Mobile host redirect	_
33	IPv6 where-are-you	_
34	IPv6 I-am-here	_
35	Mobile registration request	-
36	Mobile registration reply	-
37–255	Reserved	_

Layer 2 Information Capture Using NetFlow Layer 2 and Security Monitoring Exports

The NetFlow Layer 2 and Security Monitoring Exports feature has the ability to capture the values of the MAC address and VLAN ID fields from flows. The two supported VLAN types are 802.1q and Cisco's Inter-Switch Link (ISL).

- Understanding Layer 2 MAC Address Fields
- Understanding Layer 2 VLAN ID Fields

Understanding Layer 2 MAC Address Fields

The new Layer 2 fields that the NetFlow Layer 2 and Security Monitoring Exports feature captures the values of are:

- The source MAC address field from frames that are received by the NetFlow router
- The destination MAC address field from frames that are transmitted by the NetFlow router
- The VLAN ID field from frames that are received by the NetFlow router
- The VLAN ID field from frames that are transmitted by the NetFlow router

The Ethernet Type II and Ethernet 802.3 frame formats are shown in Figure 4. The destination address field and the source address field in the frame formats are the MAC addresses whose values NetFlow captures. The fields for the Ethernet frame formats are explained in Table 3.

Figure 4 Ethernet Type II and 802.3 Frame Formats

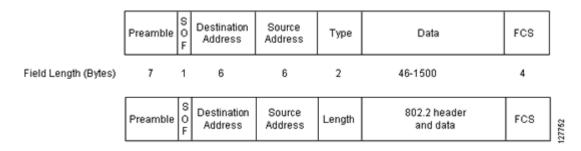


Table 3 Ethernet Type II and 802.3 Frame Fields

Field	Description
Preamble	The entry in the Preamble field is an alternating pattern of 1s and 0s that tells receiving stations that a frame is coming. It also provides a means for the receiving stations to synchronize their clocks with the incoming bit stream.
SOF (Start of frame)	The SOF field holds an alternating pattern of 1s and 0s, ending with two consecutive 1-bits indicating that the next bit is the first bit of the first byte of the destination MAC address.

Table 3 Ethernet Type II and 802.3 Frame Fields (continued)

Field	Description					
Destination Address	The 48-bit destination address identifies which station(s) on the LAN should receive the frame. The first two bits of the destination MAC address are reserved for special functions:					
	• The first bit in the DA field indicates whether the address is an individual address (0) or a group address (1).					
	• The second bit indicates whether the DA is globally administered (0) or locally administered (1).					
	The remaining 46 bits are a uniquely assigned value that identifies a single station, a defined group of stations, or all stations on the network.					
Source Address	The 48-bit source address identifies which station transmitted the frame. The source address is always an individual address and the left-most bit in the SA field is always 0.					
Type or	Type—In an Ethernet Type II frame this part of the frame is used for the Type field. The Type field is used to identify the next layer protocol in the frame.					
Length	Length—In an 802.3 Ethernet frame this part of the frame is used for the Length field. The Length field is used to indicate the length of the Ethernet frame. The value can be between 46 and 1500 bytes.					
Data	(Ethernet type II) 46–1500 bytes of data					
or	or					
802.2 header and data	(802.3/802.2) 8 bytes of header and 38–1492 bytes of data.					
FCS (Frame Check Sequence)	This field contains a 32-bit cyclic redundancy check (CRC) value, which is created by the sending station and is recalculated by the receiving station to check for damaged frames. The FCS is generated for the DA, SA, Type, and Data fields of the frame. The FCS does not include the data portion of the frame.					

Understanding Layer 2 VLAN ID Fields

NetFlow can capture the value in the VLAN ID field for 802.1q tagged VLANs and Cisco ISL encapsulated VLANs. The section describes the two types of VLANs.

It has become common to refer to both 802.1q and ISL as VLAN encapsulation protocols.

- Understanding 802.1q VLANs
- Understanding Cisco ISL VLANs

Understanding 802.1q VLANs

Devices that use 802.1q insert a four-byte tag into the original frame before it is transmitted. Figure 5 shows the format of an 802.1q tagged Ethernet frame. The fields for 802.1q VLANs are described in Table 4.

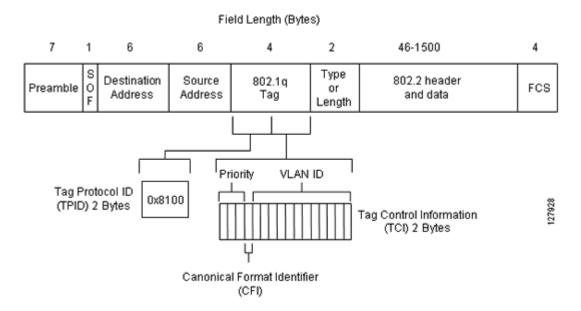


Figure 5 802.1q Tagged Ethernet Type II or 802.3 Frame

Table 4 802.1q VLAN Encapsulation Fields

Field	Description					
DA, SA, Type or Length, Data, and FCS	These fields are described in Table 3.					
Tag Protocol ID (TPID)	This 16-bit field is set to a value of 0x8100 to identify the frame as an IEEE 802.1q tagged frame.					
Priority	Also known as user priority, this 3-bit field refers to the 802.1p priority. It indicates the frame priority level which can be used for prioritizing traffic and is capable of representing 8 levels (0–7).					
Tag Control Information	The 2-byte Tag Control Information field is comprised of two sub-fields:					
	• (CFI)Canonical Format Indicator (CFI)—If the value of this 1-bit field is 1, then the MAC address is in noncanonical format. If the value of this field is 0, then the MAC address is in canonical format.					
	• VLAN ID—This 12-bit field uniquely identifies the VLAN to which the frame belongs. It can have a value between 0 and 4095.					

Understanding Cisco ISL VLANs

ISL is a Cisco proprietary protocol for encapsulating frames on a VLAN trunk. Devices that use ISL add an ISL header to the frame. This process is known as VLAN encapsulation. 802.1Q is the IEEE standard for tagging frames on a VLAN trunk. Figure 6 shows the format of a Cisco ISL-encapsulated Ethernet frame. The fields for 802.1q VLANs are described in Table 5.

Figure 6 Cisco ISL Tagged Ethernet Frame

#of bits in the field	40	4	4	48	16	24	24	15	1	16	16	1 to 24575 bytes	32	
Field Name	DA	TYPE	USER	SA	LEN	AAAA03(SNAP)	HSA	VLAN	BPDU	INDEX	RES	Enscapsulated FRAME	FCS	127755

Table 5 ISL VLAN Encapsulation

Field	Description
DA (destination address)	This 40-bit field is a multicast address and is set at 0x01-00-0C-00-00 or 0x03-00-0c-00-00. The receiving host determines that the frame is encapsulated in ISL by reading the 40-bit DA field and matching it to one of the two ISL multicast addresses.
Type	This 4-bit field indicates the type of frame that is encapsulated and could be used in the future to indicate alternative encapsulations.
	TYPE codes:
	• 0000 = Ethernet
	• 0001 = Token Ring
	• 0010 = FDDI
	• $0011 = ATM$
USER	This 4-bit field is used to extend the meaning of the Frame TYPE field. The default USER field value is 0000. For Ethernet frames, the USER field bits 0 and 1 indicate the priority of the packet as it passes through the switch. Whenever traffic can be handled more quickly, the packets with this bit set should take advantage of the quicker path. Such paths however are not required.
	USER codes:
	• XX00 = Normal priority
	• XX01 = Priority 1
	• XX10 = Priority 2
	• XX11 = Highest priority
SA	This 48-bit field is the source address field of the ISL packet. It should be set to the 802.3 MAC address of the switch port transmitting the frame. The receiving device can ignore the SA field of the frame.
LEN	This 16-bit value field stores the actual packet size of the original packet. The LEN field represents the length of the packet in bytes, excluding the DA, TYPE, USER, SA, LEN, and FCS fields. The total length of the excluded fields is 18 bytes, so the LEN field represents the total length minus 18 bytes.
AAAA03(SNAP)	The AAAA03 SNAP field is a 24-bit constant value of 0xAAAA03.
HSA	This 24-bit field represents the upper three bytes (the manufacturer's ID portion) of the SA field. It must contain the value 0x00-00-0C.
VLAN	This 15-bit field is the Virtual LAN ID of the packet. This value is used to mark frames on different VLANs.

Table 5 ISL VLAN Encapsulation (continued)

Field	Description						
BPDU	The bit in the BPDU field is set for all BPDU packets that are encapsulated by the ISL frame. The BPDUs are used by the spanning tree algorithm to find out information about the topology of the network. This bit is also set for CDP and VTP frames that are encapsulated.						
INDEX	This 16-bit field indicates the port index of the source of the packet as it exits the switch. It is used for diagnostic purposes only, and may be set to any value by other devices. It is ignored in received packets.						
RES	This 16-bit field is used when Token Ring or FDDI packets are encapsulated with an ISL frame.						
Encapsulated FRAME	This field contains the encapsulated Layer 2 frame.						
FCS	The FCS field consists of 4 bytes. It includes a 32-bit CRC value, which is created by the sending station and is recalculated by the receiving station to check for damaged frames. The FCS covers the DA, SA, Length/Type, and Data fields. When an ISL header is attached to a Layer 2 frame, a new FCS is calculated over the entire ISL packet and added to the end of the frame.						
	Note The addition of the new FCS does not alter the original FCS that is contained within the encapsulated frame.						

How to Configure NetFlow Layer 2 and Security Monitoring Exports

This section contains the following procedure:

- Configuring NetFlow Layer 2 and Security Monitoring Exports, page 14
- Verifying NetFlow Layer 2 and Security Monitoring Exports, page 17 (Optional)

Configuring NetFlow Layer 2 and Security Monitoring Exports

Prerequisites

CEF, dCEF, or fast switching for IP must be configured on your system before you configure NetFlow Layer 2 and Security Monitoring Exports.

The optional Verifying NetFlow Layer 2 and Security Monitoring Exports task uses the **show ip cache verbose flow** command to display the values of the fields that you have configured the NetFlow Layer 2 and Security Monitoring Exports feature to capture. In order for you to see the values of the fields that you have configured the NetFlow Layer 2 and Security Monitoring Exports feature to capture your router must be forwarding IP traffic that meets the criteria for these fields. For example, if you configure the **ip flow-capture ipid** command your router must be forwarding IP datagrams to capture the IP id values from the IP datagrams in the flow.

If you want to capture the values of the layer 3 IP fragment offset field from the IP headers in your IP traffic using the **ip flow-capture fragment-offset** command your router must be running Cisco IOS 12.4(2)T or newer.

Restrictions

The "Verifying NetFlow Layer 2 and Security Monitoring Exports" uses the **show ip cache verbose flow** command. The following restrictions apply to using the **show ip cache verbose flow** command.

Displaying Detailed NetFlow Cache Information on Platforms Running Distributed Cisco Express Forwarding

On platforms running dCEF, NetFlow cache information is maintained on each line card or Versatile Interface Processor. If you want to use the **show ip cache verbose flow** command to display this information on a distributed platform, you must enter the command at a line card prompt.

Cisco 7500 Series Platform

To display detailed NetFlow cache information on a Cisco 7500 series router that is running distributed dCEF, enter the following sequence of commands:

```
Router# if-con slot-number
LC-slot-number# show ip cache verbose flow
```

For Cisco IOS Releases 12.3(4)T, 12.3(6), and 12.2(20)S and later, enter the following command to display detailed NetFlow cache information:

Router# execute-on slot-number show ip cache verbose flow

Cisco 12000 Series Platform

To display detailed NetFlow cache information on a Cisco 12000 Series Internet Router, enter the following sequence of commands:

```
Router# attach slot-number
LC-slot-number# show ip cache verbose flow
```

For Cisco IOS Releases 12.3(4)T, 12.3(6), and 12.2(20)S and later, enter the following command to display detailed NetFlow cache information:

Router# execute-on slot-number show ip cache verbose flow .

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip flow-capture fragment-offset
- 4. ip flow-capture icmp
- 5. ip flow-capture ip-id
- 6. ip flow-capture mac-addresses
- 7. ip flow-capture packet-length
- 8. ip flow-capture ttl
- 9. ip flow-capture vlan-id
- **10. interface type** [number | slot/port]
- 11. ip flow ingress and/or ip flow egress
- 12. end

DETAILED STEPS

	Command or Action	Purpose						
Step 1	enable	Enables privileged EXEC mode.						
		• Enter your password if prompted.						
	Example: Router> enable							
Step 2	configure terminal	Enters global configuration mode.						
	<pre>Example: Router# configure terminal</pre>							
Step 3	ip flow-capture fragment-offset	(Optional) Enables capturing the value of the IP fragment offset field from the first fragmented IP datagram in a flow.						
	<pre>Example: Router(config)# ip flow-capture fragment-offset</pre>							
Step 4	ip flow-capture icmp	(Optional) Enables you to capture the value of the ICMP type and code fields from ICMP datagrams in a flow.						
	Example: Router(config)# ip flow-capture icmp							
Step 5	ip flow-capture ip-id	(Optional) Enables you to capture the value of the IP-ID field from the first IP datagram in a flow.						
	Example: Router(config)# ip flow-capture ip-id							
Step 6	ip flow-capture mac-addresses	(Optional) Enables you to capture the values of the source and destination MAC addresses from the traffic in a flow.						
	<pre>Example: Router(config)# ip flow-capture mac-addresses</pre>							
Step 7	ip flow-capture packet-length	(Optional) Enables you to capture the minimum and maximum values of the packet length field from IP datagrams in a flow.						
	<pre>Example: Router(config) # ip flow-capture packet-length</pre>							
Step 8	ip flow-capture ttl	(Optional) Enables you to capture the minimum and maximum values of the Time-to-Live (TTL) field from IP						
	<pre>Example: Router(config) # ip flow-capture ttl</pre>	datagrams in a flow.						
Step 9	ip flow-capture vlan-id	(Optional) Enables you to capture the 802.1q or ISL VLAN-ID field from VLAN encapsulated frames in a flow						
	<pre>Example: Router(config)# ip flow-capture vlan-id</pre>	that are received or transmitted on trunk ports.						
Step 10	<pre>interface type [number slot/port]</pre>	Enters interface configuration mode for the type of interface specified in the command.						
	<pre>Example: Router(config)# interface ethernet 0/0</pre>							

	Command or Action	Purpose
Step 11	<pre>ip flow ingress and/or ip flow egress</pre>	Enables ingress NetFlow data collection on the interface. and/or Enables egress NetFlow data collection on the interface.
	<pre>Example: Router(config-if)# ip flow ingress and/or</pre>	
	<pre>Example: Router(config-if)# ip flow egress</pre>	
Step 12	end	Exits global configuration mode.
	<pre>Example: Router(config)# end</pre>	

Verifying NetFlow Layer 2 and Security Monitoring Exports

To verify the configuration of NetFlow Layer 2 and Security Monitoring Exports use the following step.

SUMMARY STEPS

1. show ip cache verbose flow

DETAILIED STEPS

Step 1 show ip cache verbose flow

The display output below shows that NetFlow Layer 2 and Security Monitoring Exports is working properly because the values have been captured from the Layer 2 and Layer 3 fields in the flows. The values captured by the NetFlow Layer 2 and Security Monitoring Exports feature from the Layer 2 and Layer 3 fields in the flows are shown in **bold** text.

Router# show ip cache verbose flow

```
IP packet size distribution (25229 total packets):
  1-32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
   000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000.
   512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
   .000 .000 .000 .206 .793 .000 .000 .000 .000 .000
IP Flow Switching Cache, 278544 bytes
 6 active, 4090 inactive, 17 added
 505 ager polls, 0 flow alloc failures
 Active flows timeout in 1 minutes
 Inactive flows timeout in 10 seconds
IP Sub Flow Cache, 25736 bytes
 12 active, 1012 inactive, 39 added, 17 added to flow
 O alloc failures, O force free
 1 chunk, 1 chunk added
 last clearing of statistics never
Protocol
                Total
                      Flows Packets Bytes Packets Active(Sec) Idle(Sec)
```

	Flows /:	Sec	/Flow	/Pkt	/Sec	/Flow	/Flow
TCP-Telnet	1	0.0	362	940	2.7	60.2	0.0
TCP-FTP	1	0.0	362	840	2.7	60.2	0.0
TCP-FTPD	1	0.0	362	840	2.7	60.1	0.1
TCP-SMTP	1	0.0	361	1040	2.7	60.0	0.1
UDP-other	5	0.0	1	66	0.0	1.0	10.6
ICMP	2	0.0	8829	1378	135.8	60.7	0.0
Total:	11	0.0	1737	1343	147.0	33.4	4.8
SrcIf	SrcIPaddress	DstI	f	Ds	tIPaddress	Pr TOS	Flgs Pkts
Port Msk AS		Port	Msk AS	Ne:	xtHop	В	/Pk Active
Et0/0.1	10.251.138.21	8 Et1/	0.1	17	2.16.10.2	06 80	00 65
0015 /0 0		0015	0 0	0.	0.0.0		840 10.8
MAC: (VLAN id)	aaaa.bbbb.cc0	3 (005	5)	aa	aa.bbbb.cc06	(006)	
Min plen:	840			Ma:	x plen:	840	
Min TTL:	59			Ma	x TTL:	59	
IP id:	0						

Configuration Examples for NetFlow Layer 2 and Security Monitoring Exports

This section provides the following configuration examples:

- Configuring and Using NetFlow Layer 2 and Security Monitoring Exports to Analyze a Simulated FTP Attack: Example, page 19
- Configuring and Using NetFlow Layer 2 and Security Monitoring Exports to Analyze a Simulated ICMP Ping Attack: Example, page 25

Configuring and Using NetFlow Layer 2 and Security Monitoring Exports to Analyze a Simulated FTP Attack: Example

The following example shows how to use the NetFlow Layer 2 and Security Monitoring Exports feature to find out whether your network is being attacked by a host that is sending fake FTP traffic in an attempt to overwhelm the FTP server. This attack might cause end users to see a degradation in the ability of the FTP server to accept new connections or to service existing connections.

This example uses the network shown in Figure 7. Host A is sending fake FTP packets to the FTP server.

This example also shows you how to use the Layer 2 data captured by the NetFlow Layer 2 and Security Monitoring Exports feature to learn where the traffic is originating and what path it is taking through the network.

Figure 7 Test Network

S3/0

802.1q trunk

VLAN 5

Simulated DoS attack

172.16.1.1

aaaa.bbb.cc03 aaaa.bbb.cc04 aaaa.bbb.cc05 aaaa.bbb.cc06 172.16.6.1 172.16.6.2 172.16.7.1 172.16.7.2 Host A FTP server S2/0 S2/0 172.16.1.2 172.16.10.1 E0/0 R2 E1/0.1 A E1/0.1 R4

Keep track of the MAC addresses and IP addresses of the devices in your network. You can use them to analyze attacks and to resolve problems.

This example does not include the **ip flow-capture icmp** command that captures the value of the ICMP type and code fields. The use of the **ip flow-capture icmp** command is described in "Configuring and Using NetFlow Layer 2 and Security Monitoring Exports to Analyze a Simulated ICMP Ping Attack: Example."

R2

```
!
hostname R2
!
interface Ethernet0/0
mac-address aaaa.bbbb.cc02
ip address 172.16.1.2 255.255.255.0
!
interface Ethernet1/0
mac-address aaaa.bbbb.cc03
no ip address
!
interface Ethernet1/0.1
```

S3/0

802.1q trunk

VLAN 6

172.16.10.2

```
encapsulation dot1Q 5
ip address 172.16.6.1 255.255.255.0
router rip
version 2
network 172.16.0.0
no auto-summary
R3
hostname R3
ip flow-capture fragment-offset
ip flow-capture packet-length
ip flow-capture ttl
ip flow-capture vlan-id
ip flow-capture ip-id
ip flow-capture mac-addresses
interface Ethernet0/0
mac-address aaaa.bbbb.cc04
no ip address
interface Ethernet0/0.1
encapsulation dot10 5
ip address 172.16.6.2 255.255.255.0
ip accounting output-packets
ip flow ingress
interface Ethernet1/0
mac-address aaaa.bbbb.cc05
no ip address
interface Ethernet1/0.1
encapsulation dot1Q 6
ip address 172.16.7.1 255.255.255.0
ip accounting output-packets
ip flow egress
router rip
version 2
network 172.16.0.0
no auto-summary
R4
hostname R4
interface Ethernet0/0
mac-address aaaa.bbbb.cc07
ip address 172.16.10.1 255.255.255.0
interface Ethernet1/0
mac-address aaaa.bbbb.cc06
no ip address
interface Ethernet1/0.1
encapsulation dot1Q 6
 ip address 172.16.7.2 255.255.255.0
```

```
! router rip version 2 network 172.16.0.0 no auto-summary !
```

The **show ip cache verbose flow** command displays the NetFlow flows that have been captured from the FTP traffic that Host A is sending.

The fields that have the values captured by the **ip flow-capture** command are in Table 9. These are the fields and the values that are used to analyze the traffic for this example. The other fields captured by the **show ip cache verbose flow** command are explained in Table 6, Table 7, and Table 8.

The preceding output shows the percentage distribution of packets by size. In this display, 99.5 percent of the packets fall in the 1024-byte size range, and 0.3 percent fall in the 64-byte range.

The next section of the output can be divided into four parts. The section and the table corresponding to each are as follows:

- Field Descriptions in the NetFlow Cache Section of the Output (Table 6 on page 22)
- Field Descriptions in the Activity by Protocol Section of the Output (Table 7 on page 23)
- Field Descriptions in the NetFlow Record Section of the Output (Table 8 on page 23)
- NetFlow Layer 2 and Security Monitoring Exports Fields in the NetFlow Record Section of the Output (Table 9 on page 24)

```
IP Flow Switching Cache, 278544 bytes
 5 active, 4091 inactive, 25 added
 719 ager polls, 0 flow alloc failures
 Active flows timeout in 1 minutes
 Inactive flows timeout in 10 seconds
IP Sub Flow Cache, 25736 bytes
 10 active, 1014 inactive, 64 added, 25 added to flow
 0 alloc failures, 0 force free
 1 chunk, 1 chunk added
 last clearing of statistics never
             Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)
                     /Sec /Flow /Pkt /Sec /Flow
_____
                                                    58.1
                      0.0
                 5
TCP-FTP
                                429 840
                                              6.6
                                                               1.8
                  5
                       0.0
                                 129 835
                                              6.6
                                                     17.6
                                                                7.9
Total:
SrcIf
            SrcIPaddress
                          DstIf
                                        DstIPaddress Pr TOS Flgs Pkts
Port Msk AS
                           Port Msk AS
                                        NextHop
                                                          B/Pk Active
             10.132.221.111 Et1/0.1
Et0/0.1
                                        172.16.10.2
                                                       06 80 00
                                                                  198
0015 /0 0
                           0015 /0 0
                                                                  41.2
                                        0.0.0.0
                                                          840
MAC: (VLAN id) aaaa.bbbb.cc03 (005)
                                       aaaa.bbbb.cc06 (006)
Min plen: 840
                                        Max plen:
Min TTL:
             59
                                        Max TTL:
                                                       59
             0
IP id:
Et0/0.1
             10.251.138.218 Et1/0.1
                                        172.16.10.2
                                                       06 80 00
                                                                   198
                                        0.0.0.0
0015 /0 0
                           0015 /0 0
                                                            840
                                                                  41.2
MAC: (VLAN id) aaaa.bbbb.cc03 (005)
                                        aaaa.bbbb.cc06 (006)
```

R3#

Min plen:	840			Max plen:	840		
Min TTL:	59			Max TTL:	59		
IP id:	0						
Et0/0.1	10.10.12.1	Et1/0.1		172.16.10.2	06 80	00	203
0015 /0 0		0015 /0	0	0.0.0.0		840	42.2
MAC: (VLAN id)	aaaa.bbbb.cc03	(005)		aaaa.bbbb.cc06	(006)		
Min plen:	840			Max plen:	840		
Min TTL:	59			Max TTL:	59		
IP id:	0						
Et0/0.1	10.231.185.254			172.16.10.2	06 80	00	203
0015 /0 0		0015 /0	0	0.0.0.0		840	42.2
, ,	aaaa.bbbb.cc03	(005)		aaaa.bbbb.cc06	(006)		
Min plen:	840			Max plen:	840		
Min TTL:	59			Max TTL:	59		
IP id:	0						
Et0/0.1	10.71.200.138			172.16.10.2	06 80	0.0	203
0015 /0 0	10.71.200.136	0015 /0		0.0.0.0	00 80	840	42.2
	aaaa.bbbb.cc03		U	aaaa.bbbb.cc06	(006)	040	42.2
Min plen:	840	(003)		Max plen:	840		
Min TTL:	59			Max pren:	59		
MIN TIL: IP id:	0			Max TIL:	59		
IP IQ:	U						

Table 6 describes the significant fields shown in the NetFlow cache section of the output.

Table 6 Field Descriptions in the NetFlow Cache Section of the Output

Field	Description
bytes	Number of bytes of memory used by the NetFlow cache.
active	Number of active flows in the NetFlow cache at the time this command was entered.
inactive	Number of flow buffers that are allocated in the NetFlow cache but that were not assigned to a specific flow at the time this command was entered.
added	Number of flows created since the start of the summary period.
ager polls	Number of times the NetFlow code caused entries to expire (used by Cisco for diagnostics only).
flow alloc failures	Number of times the NetFlow code tried to allocate a flow but could not.
last clearing of statistics	The period of time that has passed since the clear ip flow stats privileged EXEC command was last executed. The standard time output format of hours, minutes, and seconds (hh:mm:ss) is used for a period of time less than 24 hours. This time output changes to hours and days after the time exceeds 24 hours.

Table 7 describes the significant fields shown in the activity by protocol section of the output.

Table 7 Field Descriptions in the Activity by Protocol Section of the Output

Field	Description					
Protocol	IP protocol and the well-known port number. (Refer to http://www.iana.org, <i>Protocol Assignment Number Services</i> , for the latest RFC values.)					
	Note Only a small subset of all protocols is displayed.					
Total Flows	Number of flows for this protocol since the last time statistics were cleared.					
Flows/Sec	Average number of flows for this protocol per second; equal to the total flows divided by the number of seconds for this summary period.					
Packets/Flow	Average number of packets for the flows for this protocol; equal to the total packets for this protocol divided by the number of flows for this protocol for this summary period.					
Bytes/Pkt	Average number of bytes for the packets for this protocol; equal to the total bytes for this protocol divided by the total number of packets for this protocol for this summary period.					
Packets/Sec	Average number of packets for this protocol per second; equal to the total packets for this protocol divided by the total number of seconds for this summary period.					
Active(Sec)/Flow	Number of seconds from the first packet to the last packet of an expired flow divided by the number of total flows for this protocol for this summary period.					
Idle(Sec)/Flow	Number of seconds observed from the last packet in each nonexpired flow for this protocol until the time at which the show ip cache verbose flow command was entered divided by the total number of flows for this protocol for this summary period.					

Table 8 describes the significant fields in the NetFlow record section of the output.

Table 8 Field Descriptions in the NetFlow Record Section of the Output

Field	Description					
SrcIf	Interface on which the packet was received.					
Port Msk AS	Source port number (displayed in hexadecimal format), IP address mask, and autonomous system number. This is always set to 0 in MPLS flows.					
SrcIPaddress	This is the source IP address of the traffic in the five flows. The traffic is using five different IP source addresses					
	• 10.132.221.111					
	• 10.251.138.218					
	• 10.10.12.1					
	• 10.231.185.254					
	• 10.71.200.138					
DstIf	Interface from which the packet was transmitted.					
	Note If an asterisk (*) immediately follows the DstIf field, the flow being shown is an egress flow.					

Table 8 Field Descriptions in the NetFlow Record Section of the Output (continued)

Field	Description
Port Msk AS	Source port number (displayed in hexadecimal format), IP address mask, and autonomous system number. The value of this field is always set to 0 in MPLS flows.
DstIPaddress	This is the destination IP address of the traffic.
	Note 172.17.10.2 is the IP address of the FTP server.
NextHop	The BGP next-hop address. This is always set to 0 in MPLS flows.
Pr	IP protocol "well-known" port number, displayed in hexadecimal format. (Refer to http://www.iana.org, <i>Protocol Assignment Number Services</i> , for the latest RFC values.)
ToS	Type of service, displayed in hexadecimal format.
B/Pk	Average number of bytes observed for the packets seen for this flow.
Flgs	TCP flags, shown in hexadecimal format. This value is the result of bitwise OR of the TCP flags from all packets in the flow.
Pkts	Number of packets in this flow.
Active	Time the flow has been active.

Table 9 describes the fields and values for the NetFlow Traffic Classification and Identification fields for the NetFlow record section of the output.

Table 9 NetFlow Layer 2 and Security Monitoring Exports Fields in the NetFlow Record Section of the Output

Field	Description					
MAC	These are the source and destination MAC addresses from the traffic. The source and destination MAC address are read from left to right in the output.					
	• The traffic is being received from MAC address aaa.bbb.cc03.					
	Note This MAC address is interface 1/0.1 on router R2.					
	• The traffic is being transmitted to MAC address aaa.bbb.cc06.					
	Note This MAC address is interface 1/0.1 on router R4.					
VLAN id	These are the source and destination VLAN IDs. The source and destination VLAN IDs are read from left to right in the output.					
	• The traffic is being received from VLAN 5.					
	• The traffic is being transmitted to VLAN 6.					
Min plen	This is the minimum packet length for the packets captured in the five flows.					
	The current value is 840.					
Max plen	This is the maximum packet length for the packets captured in the five flows.					
	The current value is 840.					
Min TTL	This is the minimum Time-to-Live (TTL) for the packets captured in the five flows.					
	The current value is 59.					

Table 9 NetFlow Layer 2 and Security Monitoring Exports Fields in the NetFlow Record Section of the Output (continued)

Field	Description				
Max TTL	This is the maximum TTL for the packets captured in the five flows.				
	The current value is 59.				
IP id	This is the IP identifier field for the traffic in the five flows.				
	The current value is 0.				

The fact that the Layer 3 TTL, identifier and packet length fields in the five flows have the same values is a good indication that this traffic is a DoS attack. If this data had been captured from real traffic the values would typically be different. The fact that all six of these flows have a TTL value of 59 indicates that this traffic is originating from points that are the same distance away from R3. Real user traffic would normally be arriving from many different distances away; therefore the TTL values would be different.

If this traffic is identified as a DoS attack (based on the data captured in the Layer 3 fields) you can use the Layer 2 information in the flows to identify the path the traffic is taking through the network. In this example, the traffic is being sent to R3 on VLAN 5 by R2. You can demonstrate that R2 is transmitting the traffic over interface 1/0.1 because the source MAC address (aaaa.bbb.cc03) belongs to 1/0.1 on R2. You can identify that R3 is transmitting the traffic using VLAN 6 on interface 1/0.1 to interface 1/0.1 on R4 because the destination MAC address (aaaa.bbbb.cc06) belongs to interface 1/0.1 on R4.

You can use this information to develop a plan to mitigate this attack. One possible way to mitigate this attack is by configuring an extended IP access list that blocks FTP traffic from any host with a source address that is on the 10.0.0.0 network. Another possible solution is to configure a default route for the 10.0.0.0 network that points to the null interface on the router.

Each of these solutions blocks traffic from legitimate hosts on the 10.0.0.0 network. Therefore these solutions should be used only temporarily while you identify the point of origin of the attack and decide how to stop it there.

Configuring and Using NetFlow Layer 2 and Security Monitoring Exports to Analyze a Simulated ICMP Ping Attack: Example

The following example shows how to use the NetFlow Layer 2 and Security Monitoring Exports feature to find out that your network is being attacked by ICMP traffic. It uses the network shown in Figure 7. Host A is sending very large ICMP ping packets to the FTP server.

R2

```
! hostname R2 ! interface Ethernet0/0 mac-address aaaa.bbbb.cc02 ip address 172.16.1.2 255.255.255.0 ! interface Ethernet1/0 mac-address aaaa.bbbb.cc03 no ip address
```

```
interface Ethernet1/0.1
encapsulation dot1Q 5
ip address 172.16.6.1 255.255.255.0
router rip
version 2
network 172.16.0.0
no auto-summary
R3
hostname R3
ip flow-capture fragment-offset
ip flow-capture packet-length
ip flow-capture ttl
ip flow-capture vlan-id
ip flow-capture icmp
ip flow-capture ip-id
ip flow-capture mac-addresses
interface Ethernet0/0
mac-address aaaa.bbbb.cc04
no ip address
interface Ethernet0/0.1
encapsulation dot1Q 5
ip address 172.16.6.2 255.255.255.0
ip accounting output-packets
ip flow ingress
interface Ethernet1/0
mac-address aaaa.bbbb.cc05
no ip address
interface Ethernet1/0.1
encapsulation dot1Q 6
ip address 172.16.7.1 255.255.255.0
ip accounting output-packets
ip flow egress
router rip
version 2
network 172.16.0.0
no auto-summary
```

R4

```
hostname R4
interface Ethernet0/0
mac-address aaaa.bbbb.cc07
ip address 172.16.10.1 255.255.255.0
interface Ethernet1/0
mac-address aaaa.bbbb.cc06
no ip address
1
interface Ethernet1/0.1
 encapsulation dot1Q 6
ip address 172.16.7.2 255.255.255.0
1
router rip
version 2
network 172.16.0.0
no auto-summary
```

The **show ip cache verbose flow** command displays the NetFlow flows that have been captured from the ICMP traffic that Host A is sending.

The fields that have their values captured by the **ip flow-capture** command are explained in Table 13. These are the fields and the values that are used to analyze the traffic for this example. The other fields captured by the **show ip cache verbose flow** command are explained in Table 10, Table 11 and Table 12.

R3# show ip cache verbose flow

```
IP packet size distribution (5344 total packets):
    1-32    64    96    128    160    192    224    256    288    320    352    384    416    448    480
    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000
    512    544    576    1024    1536    2048    2560    3072    3584    4096    4608
    .000    .000    .000    .000    .000    .000    .000    .000
```

The preceding output shows the percentage distribution of packets by size. In this display, 16.6 percent of the packets fall in the 1024-byte size range and 83.2 percent fall in the 1536-byte range.

The next section of the output can be divided into four sections. The section and the table corresponding to each are as follows:

- Field Descriptions in the NetFlow Cache Section of the Output (Table 10 on page 28)
- Field Descriptions in the Activity by Protocol Section of the Output (Table 11 on page 29)
- Field Descriptions in the NetFlow Record Section of the Output (Table 12 on page 29)
- NetFlow Layer 2 and Security Monitoring Exports Fields in the NetFlow Record Section of the Output (Table 13 on page 30)

```
IP Flow Switching Cache, 278544 bytes
3 active, 4093 inactive, 7 added
91 ager polls, 0 flow alloc failures
Active flows timeout in 1 minutes
Inactive flows timeout in 10 seconds
IP Sub Flow Cache, 25736 bytes
7 active, 1017 inactive, 17 added, 7 added to flow
0 alloc failures, 0 force free
1 chunk, 0 chunks added
last clearing of statistics 00:01:13
Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)
```

R3#

	Flows /S	ec	/Flow	/P	kt	/Sec	/Flow	W	/ F	'low
ICMP	2 0	. 0	1500	13	78	42.8	11.4	4	1	.0.9
Total:	2 0	.0	600	13	78	42.9	11.	5	1	.0.8
SrcIf	SrcIPaddress	DstI	f		DstIP	address	Pr '	ros	Flgs	Pkts
Port Msk AS		Port	Msk AS	5	NextH	Iop		В	/Pk	Active
Et0/0.1	10.106.1.1	Et1/	0.1		172.1	6.10.2	01 (00	10	391
0000 /0 0		0800	/0 0		0.0.0	0.0		15	500	8.6
MAC: (VLAN id)	aaaa.bbbb.cc03	(005)		aaaa.	bbbb.cc06	(00	6)		
Min plen:	1500				Max	plen:	150	00		
Min TTL:	59				Max	TTL:	ļ	59		
ICMP type:	8				ICMP	code:	0			
IP id: 1	3499									
Et0/0.1	10.106.1.1	Et1/	0.1		172.1	6.10.2	01 (00	00	1950
0000 /0 0		0000	/0 0		0.0.0	0.0		13	354	8.6
MAC: (VLAN id)	aaaa.bbbb.cc03	(005)		aaaa.	bbbb.cc06	(00)	6)		
Min plen:	772				Max p	len:	1500	0		
Min TTL:	59				Max T	TL:	5	9		
ICMP type:	0				ICMP	code:	0			
IP id: 1	3499				FO:		185			

Table 10 describes the significant fields shown in the NetFlow cache lines of the output.

Table 10 Field Descriptions in the NetFlow Cache Section of the Output

Field	Description
bytes	Number of bytes of memory used by the NetFlow cache.
active	Number of active flows in the NetFlow cache at the time this command was entered.
inactive	Number of flow buffers that are allocated in the NetFlow cache but that were not assigned to a specific flow at the time this command was entered.
added	Number of flows created since the start of the summary period.
ager polls	Number of times the NetFlow code caused entries to expire (used by Cisco for diagnostics only).
flow alloc failures	Number of times the NetFlow code tried to allocate a flow but could not.
last clearing of statistics	The period of time that has passed since the clear ip flow stats privileged EXEC command was last executed. The standard time output format of hours, minutes, and seconds (hh:mm:ss) is used for a period of time less than 24 hours. This time output changes to hours and days after the time exceeds 24 hours.

Table 11 describes the significant fields shown in the activity by protocol lines of the output.

Table 11 Field Descriptions in the Activity by Protocol Section of the Output

Field	Description	
Protocol	IP protocol and the well-known port number. (Refer to http://www.iana.org, <i>Protocol Assignment Number Services</i> , for the latest RFC values.)	
	Note Only a small subset of all protocols is displayed.	
Total Flows	Number of flows for this protocol since the last time statistics were cleared.	
Flows/Sec	Average number of flows for this protocol per second; equal to the total flows divided by the number of seconds for this summary period.	
Packets/Flow	Average number of packets for the flows for this protocol; equal to the total packets for this protocol divided by the number of flows for this protocol for this summary period.	
Bytes/Pkt	Average number of bytes for the packets for this protocol; equal to the total bytes for this protocol divided by the total number of packets for this protocol for this summary period.	
Packets/Sec	Average number of packets for this protocol per second; equal to the total packets for this protocol divided by the total number of seconds for this summary period.	
Active(Sec)/Flow	Number of seconds from the first packet to the last packet of an expired flow divided by the total number of flows for this protocol for this summary period.	
Idle(Sec)/Flow	Number of seconds observed from the last packet in each nonexpired flow for this protocol until the time at which the show ip cache verbose flow command was entered divided by the total number of flows for this protocol for this summary period.	

Table 12 describes the significant fields in the NetFlow record lines of the output.

Table 12 Field Descriptions in the NetFlow Record Section of the Output

Field	Description	
SrcIf	Interface on which the packet was received.	
Port Msk AS	Source port number (displayed in hexadecimal format), IP address mask, and autonomous system number. The value of this field is always set to 0 in MPLS flows.	
SrcIPaddress	IP address of the device that transmitted the packet. The sending host is using 10.106.1.1 as the source IP address.	
DstIf	Interface from which the packet was transmitted.	
	Note If an asterisk (*) immediately follows the DstIf field, the flow being shown is an egress flow.	
Port Msk AS	Destination port number (displayed in hexadecimal format), IP address mask, and autonomous system. This is always set to 0 in MPLS flows.	
DstIPaddress	IP address of the destination device.	
NextHop	The BGP next-hop address. This is always set to 0 in MPLS flows.	

Table 12 Field Descriptions in the NetFlow Record Section of the Output (continued)

Field	Description
Pr	IP protocol "well-known" port number, displayed in hexadecimal format. (Refer to http://www.iana.org, <i>Protocol Assignment Number Services</i> , for the latest RFC values.)
ToS	Type of service, displayed in hexadecimal format.
B/Pk	Average number of bytes observed for the packets seen for this flow.
Flgs	TCP flags, shown in hexadecimal format. This value is the result of bitwise OR of the TCP flags from all packets in the flow.
Pkts	Number of packets in this flow.
Active	Time the flow has been active.

Table 13 describes the fields and values for the NetFlow Traffic Classification and Identification fields for the NetFlow record lines of the output.

Table 13 NetFlow Layer 2 and Security Monitoring Exports Fields in the NetFlow Record Section of the Output

Field	Description		
MAC	These are the source and destination MAC addresses from the traffic. The source and destination MAC address are read from left to right in the output.		
	• The traffic is being received from MAC address aaa.bbb.cc03.		
	Note This MAC address is interface 1/0.1 on router R2.		
	• The traffic is being transmitted to MAC address aaa.bbb.cc06.		
	Note This MAC address is interface 1/0.1 on router R4.		
VLAN id	These are the source and destination VLAN IDs. The source and destination VLAN IDs are read from left to right in the output.		
	• The traffic is being received from VLAN 5.		
	• The traffic is being transmitted to VLAN 6.		
Min plen	This is the minimum packet length for the packets captured in the two flows.		
	The current value for the first flow is 1500.		
	The current value for the second flow is 772.		
Max plen	This is the maximum packet length for the packets captured in the two flows.		
	The current value for the first flow is 1500.		
	The current value for the second flow is 1500.		
Min TTL	This is the minimum Time-to-Live (TTL) for the packets captured in the two flows.		
	The current value is 59.		
Max TTL	This is the maximum TTL for the packets captured in the two flows.		
	The current value is 59.		

Table 13 NetFlow Layer 2 and Security Monitoring Exports Fields in the NetFlow Record Section of the Output (continued)

Field	Description
IP id	This is the IP identifier field for the traffic in the flows. The current value is 0 for all three flows.
ICMP type	This is the Internet Control Message Protocol (ICMP) type field from the ICMP datagram captured in the first flow.
	The value is: 8
ICMP code	This is the ICMP code field from the ICMP datagram captured in the third flow.
	The value is: 0
FO	This is the value of the fragment offset field from the first fragmented datagram in the second flow.
	The value is: 185

There are two ICMP flows shown in the output. You can tell that they are from the same ICMP datagram because they have the same IP id field value of 13499. When two ICMP flows have the same IP id value the ICMP datagram being analyzed has been fragmented. The first flow has the ICMP type field set to 8, which indicates that this is an ICMP echo request (ping) datagram. The value of 185 in the fragment offset (FO) field in the second flow shows where this fragment will be placed in the memory buffer of the FTP server as the server reassembles the ICMP datagram. The value of 185 is applicable only to the first fragment of this datagram. The subsequent values will be greater because they take into account the previous fragments.

The value of 0 in the ICMP type field of the second flow does not mean that this flow is an ICMP echo reply as Table 2 shows. In this case the ICMP type field value is set to 0 because the ICMP headers for fragments of ICMP datagrams do not have the type and code fields. The default value of 0 has been inserted instead.

If this data were captured from a real ICMP attack it would probably have more than one flow.

Although you cannot find out the original size of the ICMP datagram from the information shown by the **show ip cache verbose flow** the fact that it was large enough to be fragmented in transit is a good indication that this is not a normal ICMP datagram. Notice the values in the minimum and maximum packet length fields for both flows. The values for both fields are set to 1500 for the first flow. The value for the minimum packet length is set to 772 and the value for the maximum packet length is set to 1500 for the second flow.

If this traffic is identified as a DoS attack based on the data captured in the Layer 3 fields, you can use the Layer 2 information in the flows to identify the path the traffic is taking through the network. In this example, the traffic is being sent to R3 on VLAN 5 by R2. You can demonstrate that R2 is transmitting the traffic over interface 1/0.1 because the source MAC address (aaaa.bbb.cc03) belongs to 1/0.1 on R2. You can demonstrate that R3 is transmitting the traffic using VLAN 6 on interface 1/0.1 to interface 1/0.1 on R4, because the destination MAC address (aaaa.bbbb.cc06) belongs to interface 1/0.1 on R4.

You can use this information to mitigate this attack. One possible way to mitigate this attack is by configuring an extended IP access list that blocks ICMP traffic from any host with a source address that is on the 10.0.0.0 network. Another possible solution is to configure a default route for the 10.0.0.0 network that points to the null interface on the router.

Each of these solutions blocks traffic from legitimate hosts on the 10.0.0.0 network. Therefore these solutions should be used only temporarily while you identify the point of origin of the attack and decide how to stop it there.

Where to Go Next

See the "Related Documents" section on page 33 for links to configuration information about additional NetFlow features and services.

Additional References

The following sections provide references related to NetFlow Layer 2 and Security Monitoring Exports.

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
The minimum information about and tasks required for configuring NetFlow and NetFlow Data Export	"Getting Started with Configuring NetFlow and NetFlow Data Export"
Tasks for configuring NetFlow to capture and export network traffic data	"Configuring NetFlow and NetFlow Data Export"
Tasks for configuring Configuring MPLS Aware NetFlow	Configuring MPLS Aware NetFlow
Tasks for configuring MPLS egress NetFlow accounting	Configuring MPLS Egress NetFlow Accounting and Analysis
Tasks for configuring NetFlow input filters	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow aggregation caches	"Configuring NetFlow Aggregation Caches"
Tasks for configuring NetFlow BGP next hop support	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
Tasks for configuring NetFlow multicast support	"Configuring NetFlow Multicast Accounting"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring the SNMP NetFlow MIB	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
Tasks for configuring the NetFlow MIB and Top Talkers feature	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
There are no new or modified standards associated with	_
this feature	

MIBs

MIBs	MIBs Link
this feature	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFCs	Title
There are no new or modified RFCs associated with this	_
feature	

Technical Assistance

Description	Link
The Cisco Technical Support website contains	http://www.cisco.com/techsupport
thousands of pages of searchable technical content,	
including links to products, technologies, solutions,	
technical tips, and tools. Registered Cisco.com users	
can log in from this page to access even more content.	

Glossary

export packet—A type of packet built by a device (for example, a router) with NetFlow services enabled. The packet is addressed to another device (for example, the NetFlow Collection Engine). The packet contains NetFlow statistics. The other device processes the packet (parses, aggregates, and stores information about IP flows).

flow—A set of packets with the same source IP address, destination IP address, protocol, source/destination ports, and type-of-service, and the same interface on which flow is monitored. Ingress flows are associated with the input interface, and egress flows are associated with the output interface.

flowset—A collection of flow records that follow the packet header in an export packet. A flowset contains information that must be parsed and interpreted by the NetFlow Collection Engine. There are two types of flowsets: template flowsets and data flowsets. An export packet contains one or more flowsets, and both template and data flowsets can be mixed in the same export packet.

NetFlow—Cisco IOS accounting feature that maintains per-flow information.

NetFlow Aggregation—A NetFlow feature that lets you summarize NetFlow export data on an IOS router before the data is exported to a NetFlow data collection system such as the NetFlow Collection Engine. This feature lowers bandwidth requirements for NetFlow export data and reduces platform requirements for NetFlow data collection devices.

NetFlow Collection Engine (formerly NetFlow FlowCollector)—Cisco application that is used with NetFlow on Cisco routers and Catalyst series switches. The NetFlow Collection Engine collects packets from the router that is running NetFlow and decodes, aggregates, and stores them. You can generate reports on various aggregations that can be set up on the NetFlow Collection Engine.

NetFlow v9—NetFlow export format Version 9. A flexible and extensible means of carrying NetFlow records from a network node to a collector. NetFlow Version 9 has definable record types and is self-describing for easier NetFlow Collection Engine configuration.

template flowset—A collection of template records that are grouped in an export packet.

Feature Information for NetFlow Layer 2 and Security Monitoring Exports

Table 14 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Releases12.2(1) or 12.0(3)S or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 14 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 14 Feature Information for NetFlow Layer 2 and Security Monitoring Exports

Feature Name	Releases	Feature Configuration Information
NetFlow Layer 2 and Security Monitoring Exports	12.3(14)T 12.2(33)SRA	The NetFlow Layer 2 and Security Monitoring Exports feature enables the capture of values from fields in layer 2 and layer 3 of IP traffic for accounting and security analysis.
		The following sections provide information about this feature:
		NetFlow Layer 2 and Security Monitoring, page 2
		• Configuring NetFlow Layer 2 and Security Monitoring Exports, page 14
		 Verifying NetFlow Layer 2 and Security Monitoring Exports, page 17
		The following commands were modified by this feature: ip flow-capture , ip flow-export and show ip cache verbose flow .
Support for capturing the value from the fragment offset field of IP headers added to NetFlow Layer 2 and Security Monitoring Exports ¹	12.4(2)T	The fragment-offset keyword for the ip flow-capture command e nables capturing the value of the IP fragment offset field from the first fragmented IP datagram in a flow.

^{1.} This is a minor enhancement. Minor enhancements are not typically listed in Feature Navigator.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0804R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Configuring NetFlow BGP Next Hop Support for Accounting and Analysis

This document provides information about and instructions for configuring NetFlow Border Gateway Protocol (BGP) next hop support. This feature lets you measure network traffic on a per BGP next hop basis.

NetFlow is a Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

Module History

This module was first published on June 19th, 2006, and last updated on June 19th, 2006.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all features. To find information about feature support and configuration, use the "Feature Information for Configuring NetFlow BGP Next Hop Support for Accounting and Analysis" section on page 11.

Contents

This document includes the following sections:

- Prerequisites for Configuring NetFlow BGP Next Hop Support for Accounting and Analysis, page 2
- Restrictions for Configuring NetFlow BGP Next Hop Support for Accounting and Analysis, page 2
- Information About Configuring NetFlow BGP Next Hop Support for Accounting and Analysis, page 2
- How to Configure NetFlow BGP Next Hop Support for Accounting and Analysis, page 3
- Configuration Examples for NetFlow BGP Next Hop Support for Accounting and Analysis, page 7
- Additional References, page 8
- Glossary, page 10
- Feature Information for Configuring NetFlow BGP Next Hop Support for Accounting and Analysis, page 11

Prerequisites for Configuring NetFlow BGP Next Hop Support for Accounting and Analysis

Before you can configure the NetFlow BGP Next Hop Support feature, you must:

- Configure the router for IP routing
- Configure Cisco Express Forwarding (CEF) switching or distributed CEF (dCEF) switching on the router and on the interfaces that you want to enable NetFlow on (fast switching is not supported)
- Configure NetFlow v9 (Version 9) data export (if only Version 5 is configured, then BGP next hop data is visible in the caches, but is not exported)
- · Configure BGP

Restrictions for Configuring NetFlow BGP Next Hop Support for Accounting and Analysis

Cisco IOS Releases 12.2(14)S, 12.0(22)S, or 12.2(15)T

If your router is running a version of Cisco IOS prior to releases 12.2(14)S, 12.0(22)S, or 12.2(15)T the **ip route-cache flow** command is used to enable NetFlow on an interface.

If your router is running Cisco IOS release 12.2(14)S, 12.0(22)S, 12.2(15)T, or later the **ip flow ingress** command is used to enable NetFlow on an interface.

Recursive Load Sharing

The NetFlow cache does not capture the BGP next hop when the route to that BGP next hop is recursively load-shared via several IGP links. Instead, the NetFlow cache captures (as the BGP next hop) the effective simple next hop from among a random selection of the load-shared routes to which the BGP route recurses.

Memory Impact

For BGP-controlled routes, the NetFlow BGP Next Hop Support feature adds 16 bytes to each NetFlow flow record. This increases memory requirements by 16 bytes times the number of flow cache entries that have BGP-controlled prefixes.

Performance Impact

Because the BGP next hop is fetched from the CEF path only once per flow, the performance impact of the NetFlow BGP Next Hop Support feature is minimal.

Information About Configuring NetFlow BGP Next Hop Support for Accounting and Analysis

To configure the NetFlow BGP Next Hop Support feature, you must understand the following concepts:

- NetFlow BGP Next Hop Support Benefits, page 3
- NetFlow BGP Next Hop Support and NetFlow Aggregation, page 3

NetFlow BGP Next Hop Support Benefits

Without the NetFlow BGP Next Hop Support feature, NetFlow exports only IP next hop information (which provides information for only the next router). This feature adds BGP next hop information to the data export.

The NetFlow BGP Next Hop Support feature lets you find out through which service provider the traffic is going. This functionality is useful if you have arrangements with several other service providers for fault-protected delivery of traffic. The feature lets you charge customers more per packet when traffic has a more costly destination—you can pass on some of the cost associated with expensive trans-oceanic links or charge more when traffic is sent to another ISP with which you have an expensive charge agreement.

This feature requires the NetFlow Version 9 export format for its data export.

NetFlow BGP Next Hop Support and NetFlow Aggregation

The Cisco IOS NetFlow Aggregation feature summarizes NetFlow export data on a router before the data is exported to the NetFlow Collection Engine (formerly called the NetFlow FlowCollector). The NetFlow BGP Next Hop Support feature provides the BGP next hop and its related aggregation scheme and provides BGP next hop information within each NetFlow record.

How to Configure NetFlow BGP Next Hop Support for Accounting and Analysis

See the following sections for configuration tasks for the NetFlow BGP Next Hop Support feature. Each task in the list is identified as either required or optional.

- Configuring NetFlow BGP Next Hop Accounting, page 3 (required)
- Verifying the Configuration, page 6 (optional)

Configuring NetFlow BGP Next Hop Accounting

Perform the steps in this required task to configure NetFlow BGP next hop accounting.

This section shows how to configure NetFlow BGP next hop accounting for the main cache and aggregation caches. You can enable the export of origin AS information or peer AS information, but not both.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip flow-export version 9 [origin-as | peer-as] bgp-nexthop
- 4. ip flow-aggregation cache bgp-nexthop-tos
- 5. enabled
- 6. exit

- 7. interface interface-type interface-number
- 8. ip flow {ingress | egress}
- 9. exit
- **10.** Repeat Steps 7 through 9 to enable NetFlow on other interfaces
- 11. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
0. 0	Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	ip flow-export version 9 [origin-as peer-as] bgp-nexthop	(Required) Enables the export of information in NetFlow cache entries.
	<pre>Example: Router(config)# ip flow-export version 9 origin-as bgp-nexthop</pre>	• The version 9 keyword specifies that the export packet uses the Version 9 format.
		• The origin-as keyword specifies that export statistics include the origin autonomous system (AS) for the source and destination.
		• The peer-as keyword specifies that export statistics include the peer AS for the source and destination.
		• The bgp-nexthop keyword specifies that export statistics include BGP next hop related information.
		This command enables the export of origin AS information as well as BGP next hop information from the NetFlow main cache.
		\wedge
		Entering this command on a Cisco 12000 Series Internet Router causes packet forwarding to stop for a few seconds while NetFlow reloads the route processor and line card CEF tables. To avoid interruption of service to a live network, apply this command during a change window, or include it in the startup-config file to be executed during a router reboot.

	Command or Action	Purpose
Step 4	ip flow-aggregation cache bgp-nexthop-tos	(Optional) Enables NetFlow aggregation cache schemes and enters aggregation cache configuration mode.
	<pre>Example: Router(config)# ip flow-aggregation cache</pre>	• The bgp-nexthop-tos keyword configures the BGP next hop ToS aggregation cache scheme.
	bgp-nexthop-tos	This command specifies the BGP next hop ToS aggregation cache scheme.
Step 5	enabled	(Required) Enables the aggregation cache.
	<pre>Example: Router(config-flow-cache)# enabled</pre>	
Step 6	exit	(Required) Exits aggregation cache configuration mode and returns to global configuration mode.
	Example: Router(config-if)# exit	Note You only need to use this command if you want to enable NetFlow on another interface.
Step 7	interface interface-type interface-number	(Required) Specifies the interface that you want to enable NetFlow on and enters interface configuration mode.
	<pre>Example: Router(config)# interface ethernet 0/0</pre>	mode.
Step 8	ip flow {ingress egress}	(Required) Enables NetFlow on the interface.
	<pre>Example: Router(config-if)# ip flow ingress or</pre>	 ingress—captures traffic that is being received by the interface egress—captures traffic that is being transmitted by the interface
	<pre>Example: Router(config-if)# ip flow egress</pre>	
Step 9	exit	(Optional) Exits interface configuration mode and returns to global configuration mode.
	Example: Router(config-if)# exit	Note You only need to use this command if you want to enable NetFlow on another interface.
Step 10	Repeat Steps 7 through 9 to enable NetFlow on other interfaces	(Optional) —
Step 11	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

Troubleshooting Tips

If there are no BGP-specific flow records in the NetFlow cache, make sure that CEF or dCEF switching is enabled and that the destination for NetFlow data export is configured. Also check the routing table for BGP routes.

Verifying the Configuration

Perform the steps in this optional task to verify successful configuration of NetFlow BGP next hop accounting.

SUMMARY STEPS

- 1. enable
- 2. show ip cache verbose flow
- 3. show ip cache flow aggregation bgp-nexthop-tos
- 4. exi

DETAILED STEPS

Step 1 enable

Use this command to enable privileged EXEC mode. Enter your password if required. For example:

```
Router* enable
Router#
```

Step 2 show ip cache verbose flow

Use this command to verify successful configuration of NetFlow BGP next hop accounting. For example:

Router# show ip cache verbose flow

```
IP packet size distribution (120 total packets):
  1-32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
  .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
   512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
  000.000.000.000.000.000.000.000.000.000.000.
IP Flow Switching Cache, 17826816 bytes
 8 active, 262136 inactive, 8 added
 26 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 1081480 bytes
 8 active, 65528 inactive, 8 added, 8 added to flow
 0 alloc failures, 0 force free
 1 chunk, 1 chunk added
 last clearing of statistics never
Protocol Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)
             Flows
                      /Sec /Flow /Pkt /Sec /Flow
-----
                                                             /Flow
SrcIf SrcIPaddress DstIf
                                       DstIPaddress Pr TOS Flgs Pkts
Port Msk AS
                          Port Msk AS NextHop
                                                         B/Pk Active
                          NextHop

Et0/0/4 13.0.0.5 01 00 10

0800 /8 0 11.0.0.6 100
MUL:M_Opaks M_Obytes BGP:BGP_NextHop
Et0/0/2 12.0.0.2 Et0/0/4
                                                                 2.0
0000 /8 0
                                                                 0.0
BGP:26.0.0.6
                                    15.0.0.7
           12.0.0.2 Et0/0/4
Et0/0/2
                                                      01 00 10
                                                                 20
                                       11.0.0.6
0000 /8 0
                           0800 /8 0
                                                         100
                                                                 0.0
BGP:26.0.0.6
Et0/0/2 12.0.0.2
                           Et0/0/4
                                       15.0.0.7 01 00 10
                                                                 2.0
0000 /8 0
                           0000 /8 0
                                       11.0.0.6
                                                           100
                                                                 0.0
```

```
BGP:26.0.0.6
```

This command displays a detailed summary of NetFlow statistics (including additional NetFlow fields in the header when NetFlow Version 9 data export is configured).

Step 3 show ip cache flow aggregation bgp-nexthop-tos

Use this command to verify the configuration of a BGP next hop type of service (ToS) aggregation cache. For example:

Router# show ip cache flow aggregation bgp-nexthop-tos

```
IP Flow Switching Cache, 278544 bytes
 1 active, 4095 inactive, 1 added
  8 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 17224 bytes
 1 active, 1023 inactive, 1 added, 1 added to flow
  O alloc failures, O force free
 1 chunk, 1 chunk added
Src If
            Src AS Dst If
                                 Dst AS TOS Flows Pkts B/Pk
Active
BGP NextHop
            0 Et0/0/4
                                   0 00 9 36
Et0/0/2
                                                            40
8.2
BGP:26.0.0.6
```

Step 4 exit

Use this command to exit to user EXEC mode. For example:

```
Router# exit
Router>
```

Configuration Examples for NetFlow BGP Next Hop Support for Accounting and Analysis

This section provides the following configuration example: Configuring NetFlow BGP Next Hop Accounting: Examples, page 7

Configuring NetFlow BGP Next Hop Accounting: Examples

The following example shows how to configure NetFlow BGP next hop accounting with origin AS and BGP next hop statistics for the main cache:

```
configure terminal
!
ip flow-export version 9 origin-as bgp-nexthop
ip flow-export destination 172.16.10.2 991
!
interface ethernet 0/0
  ip flow ingress
!
```

end

The following example shows how to configure a NetFlow BGP next hop ToS aggregation cache scheme:

```
configure terminal
!
  ip flow-aggregation cache bgp-nexthop-tos
  export destination 172.16.10.2 991
  enabled
!
interface ethernet 0/0
  ip flow ingress
!
  end
```

Additional References

For additional information related to NetFlow BGP next hop support for accounting and analysis, see the following references.

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
The minimum information about and tasks required for configuring NetFlow and NetFlow Data Export	"Getting Started with Configuring NetFlow and NetFlow Data Export"
Tasks for configuring NetFlow to capture and export network traffic data	"Configuring NetFlow and NetFlow Data Export"
Tasks for configuring Configuring MPLS Aware NetFlow	Configuring MPLS Aware NetFlow
Tasks for configuring MPLS egress NetFlow accounting	Configuring MPLS Egress NetFlow Accounting and Analysis
Tasks for configuring NetFlow input filters	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow aggregation caches	"Configuring NetFlow Aggregation Caches"
Tasks for configuring NetFlow multicast support	"Configuring NetFlow Multicast Accounting"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring NetFlow Layer 2 and Security Monitoring Exports	"NetFlow Layer 2 and Security Monitoring Exports"
Tasks for configuring the SNMP NetFlow MIB	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
Tasks for configuring the NetFlow MIB and Top Talkers feature	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
None	_

MIBs

MIBs	MIBs Link
None	

RFCs

RFCs	Title
None	_

Technical Assistance

Description	Link
11	http://www.cisco.com/techsupport
thousands of pages of searchable technical content,	
including links to products, technologies, solutions,	
technical tips, and tools. Registered Cisco.com users	
can log in from this page to access even more content.	

Glossary

BGP—Border Gateway Protocol. Interdomain routing protocol that replaces Exterior Gateway Protocol (EGP). BGP exchanges reachability information with other BGP systems. It is defined by RFC 1163.

BGP next hop—IP address of the next hop to be used to reach a specific destination.

CEF—Cisco Express Forwarding. A Layer 3 IP switching technology that optimizes network performance and scalability for networks with large and dynamic traffic patterns.

dCEF—distributed Cisco Express Forwarding. A type of CEF switching in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

fast switching—Cisco feature in which a route cache expedites packet switching through a router.

FIB—forwarding information base. A table containing the information needed to forward IP datagrams. At a minimum, this table contains the interface identifier and next hop information for each reachable destination network prefix. The FIB is distinct from the routing table (also called the routing information base), which holds all routing information received from routing peers.

flow—(NetFlow) A set of packets with the same source IP address, destination IP address, source and destination ports, and type of service, and the same interface on which flow is monitored. Ingress flows are associated with the input interface, and egress flows are associated with the output interface.

NetFlow—A Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

NetFlow Aggregation—A NetFlow feature that lets you summarize NetFlow export data on an IOS router before the data is exported to a NetFlow data collection system such as the NetFlow Collection Engine. This feature lowers bandwidth requirements for NetFlow export data and reduces platform requirements for NetFlow data collection devices.

NetFlow Collection Engine (formerly NetFlow FlowCollector)—Cisco application that is used with NetFlow on Cisco routers and Catalyst series switches. The NetFlow Collection Engine collects packets from the router that is running NetFlow and decodes, aggregates, and stores them. You can generate reports on various aggregations that can be set up on the NetFlow Collection Engine.

NetFlow v9—NetFlow export format Version 9. A flexible and extensible means for carrying NetFlow records from a network node to a collector. NetFlow Version 9 has definable record types and is self-describing for easier NetFlow Collection Engine configuration.

ToS—type of service byte. Second byte in the IP header that indicates the desired quality of service for a particular datagram.

Feature Information for Configuring NetFlow BGP Next Hop Support for Accounting and Analysis

Table 1 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Release 12.2(1) or 12.0(3)S or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 1 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 1 Feature Information for Configuring NetFlow BGP Next Hop Support for Accounting and Analysis

Feature Name	Software	Feature Configuration Information
NetFlow BGP Next Hop Support	12.3(1), 12.2(18)S, 12.0(26)S, 12.2(27)SBC	The NetFlow Border Gateway Protocol (BGP) Next Hop Support feature lets you measure network traffic on a per BGP next hop basis. Without the NetFlow BGP Next Hop Support feature, NetFlow exports only IP next hop information (which provides only the address of the next router); this feature adds BGP next hop information to the data export.
		The following sections provide information about this feature:
		• NetFlow BGP Next Hop Support Benefits, page 3
		 NetFlow BGP Next Hop Support and NetFlow Aggregation, page 3
		• Configuring NetFlow BGP Next Hop Accounting, page 3
		• Verifying the Configuration, page 6
		The following commands were modified by this feature: ip flow-aggregation cache, ip flow-export, show ip cache flow aggregation, and show ip cache verbose flow.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0804R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Configuring MPLS Egress NetFlow Accounting and Analysis

This module contains information about and instructions for configuring the MPLS Egress NetFlow Accounting feature. The MPLS Egress NetFlow Accounting feature allows you to capture IP flow information for packets undergoing MPLS label disposition; that is, packets that arrive on a router as MPLS packets and are transmitted as IP packets.

NetFlow is a Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

Module History

This module was first published on June 19th, 2006, and last updated on June 19th, 2006.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all features. To find information about feature support and configuration, use the "Feature Information for Configuring MPLS Egress NetFlow Accounting" section on page 13.

Contents

- Prerequisites for Configuring MPLS Egress NetFlow Accounting, page 2
- Restrictions for Configuring MPLS Egress NetFlow Accounting, page 2
- Information About Configuring MPLS Egress NetFlow Accounting, page 2
- How to Configure MPLS Egress NetFlow Accounting, page 4
- Configuration Examples for Configuring MPLS Egress NetFlow Accounting, page 7
- Additional References, page 9
- Glossary, page 12
- Feature Information for Configuring MPLS Egress NetFlow Accounting, page 13

Prerequisites for Configuring MPLS Egress NetFlow Accounting

The network must support the following Cisco IOS features before you enable the MPLS Egress NetFlow Accounting feature:

• Multiprotocol label switching (MPLS)

Before you can configure the MPLS Egress NetFlow Accounting feature, you must:

- Configure the router for IP routing
- Configure Cisco Express Forwarding (CEF) switching or distributed CEF (dCEF) switching on the router and on the interfaces that you want to enable MPLS Egress NetFlow Accounting on (fast switching is not supported)

Restrictions for Configuring MPLS Egress NetFlow Accounting

The MPLS Egress NetFlow Accounting feature is not supported in Cisco IOS Release 12.2(25)S and later. Use the Egress NetFlow Accounting feature, which captures either IP or MPLS packets as they leave the router.

Capturing Flows from Sites that Connect to the Same PE Router

The captured egress flows must originate from different sites of the same Virtual Private Network (VPN), and they cannot connect to the same provider edge (PE) router. If both source and destination VPN sites are connected to the PE router, the MPLS egress NetFlow accounting feature does not capture these egress flows. You can capture these flows by enabling ingress NetFlow on the incoming customer edge (CE)-PE link of the PE router. For example, in Figure 1, traffic from site 3 (VPN1 destined for site 2) is captured by an ingress NetFlow enabled on the PE2-CE3 link of PE2.

Memory Impact

During times of heavy traffic, the additional flows can fill up the global flow hash table. If you need to increase the size of the global flow hash table, increase the memory of the router.

Performance Impact

MPLS egress NetFlow accounting might adversely affect network performance because of the additional accounting-related computations that occur in the traffic-forwarding path of the router.

Information About Configuring MPLS Egress NetFlow Accounting

The following sections provide information that you should understand before you configure MPLS egress NetFlow accounting:

- MPLS Egress NetFlow Accounting Benefits: Enhanced Network Monitoring and More Accurate Accounting Statistics, page 3
- MPLS VPN Flow Capture with MPLS Egress NetFlow Accounting, page 3

MPLS Egress NetFlow Accounting Benefits: Enhanced Network Monitoring and More Accurate Accounting Statistics

Enhanced Network Monitoring for Complete Billing Solution

You can now capture flows on the egress and ingress router interfaces and obtain complete end-to-end usage information on network traffic. The accounting server uses the collected data for various levels of aggregation for accounting reports and application programming interface (API) accounting information, thus providing a complete billing solution.

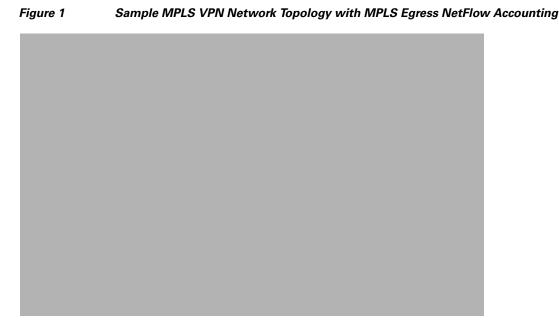
More Accurate Accounting Statistics

NetFlow data statistics provided by the MPLS Egress NetFlow Accounting feature can account for all packets that are dropped in the core of the service provider network, thus providing more accurate traffic statistics and patterns.

MPLS VPN Flow Capture with MPLS Egress NetFlow Accounting

The MPLS Egress NetFlow Accounting feature allows you to capture IP flow information for packets that arrive on a router as MPLS packets and are transmitted as IP packets.

This feature allows you to capture the MPLS Virtual Private Network (VPN) IP flows that are traveling through the service provider backbone from one site of a VPN to another site of the same VPN.


Formerly, you could capture flows only for IP packets on the ingress interface of a router. You could not capture flows for MPLS encapsulated frames, which were switched through CEF from the input port. Therefore, in an MPLS VPN environment, you captured flow information when packets were received from a customer edge (CE) router and forwarded to the backbone. However, you could not capture flow information when packets were transmitted to a CE router because those packets were received as MPLS frames.

The MPLS Egress NetFlow Accounting feature lets you capture the flows on the outgoing interfaces.

Figure 1 shows a sample MPLS VPN network topology that includes four VPN 1 sites and two VPN 2 sites. If MPLS egress NetFlow is enabled on an outgoing PE interface, you can capture IP flow information for packets that arrive at the PE as MPLS packets (from an MPLS VPN) and that are transmitted as IP packets. For example,

- To capture the flow of traffic going to site 2 of VPN 1 from any remote VPN 1 sites, you enable MPLS egress NetFlow on link PE2-CE5 of provider edge router PE2.
- To capture the flow of traffic going to site 1 of VPN 2 from any remote VPN 2 site, you enable MPLS egress NetFlow on link PE3-CE4 of the provider edge router PE3.

The flows are stored in a global flow cache maintained by the router. You can use the **show ip cache flow** command or other aggregation flow commands to view the egress flow data.

The PE routers export the captured flows to the configured collector devices in the provider network. Applications such as the Network Data Analyzer or the VPN Solution Center (VPN-SC) can gather information from the captured flows and compute and display site-to-site VPN traffic statistics.

How to Configure MPLS Egress NetFlow Accounting

Perform the following tasks to configure and verify MPLS egress NetFlow accounting:

- Configuring MPLS Egress NetFlow Accounting, page 4 (required)
- Verifying MPLS Egress NetFlow Accounting Configuration, page 5 (optional)

Configuring MPLS Egress NetFlow Accounting

Perform the steps in this required task to configure MPLS egress NetFlow accounting.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. interface interface-type interface-number
- 4. mpls netflow egress
- 5. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>interface interface-type interface-number</pre>	(Required) Specifies the interface and enters interface configuration mode.
	<pre>Example: Router(config)# interface ethernet 1/4</pre>	
Step 4	mpls netflow egress	(Required) Enables the MPLS Egress NetFlow Accounting feature on the egress router interface.
	<pre>Example: Router(config-if)# mpls netflow egress</pre>	
Step 5	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	Example: Router(config-if)# end	

Troubleshooting Tips

To display debug messages for MPLS egress NetFlow accounting, use the **debug mpls netflow** command.

Verifying MPLS Egress NetFlow Accounting Configuration

Perform the steps in this optional task to verify that the MPLS Egress NetFlow Accounting configuration is as you expect.

SUMMARY STEPS

- 1. show ip cache flow
- 2. show mpls forwarding-table detail
- 3. show mpls interfaces internal

DETAILED STEPS

Step 1 show ip cache flow

Use this command to verify that the MPLS Egress NetFlow Accounting configuration is as you expect. For example:

Router# show ip cache flow

```
IP packet size distribution (10 total packets):
  1-32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
  512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
  000.000.000.000.000.000.000.000.000.000.000.
IP Flow Switching Cache, 4456704 bytes
 1 active, 65535 inactive, 2 added
 26 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
 last clearing of statistics never
Protocol
             Total
                   Flows Packets Bytes Packets Active(Sec) Idle(Sec)
                  /Sec /Flow /Pkt /Sec /Flow /Flow
             Flows
                         -5w
5
                                              0.0
                      0.0
                                  100
                                         0.0
                                                         15.7
ICMP
              1
                               5 100 0.0
Total:
                1
                     0.0
                                                         15.7
         SrcIPaddress DstIf
                                  DstIPaddress Pr SrcP DstP Pkts
SrcIf
Et1/1
          34.0.0.2
                      Et1/4
                                  180.1.1.2
                                              01 0000 0800
```

Step 2 show mpls forwarding-table detail

Use this command to verify the configuration of MPLS egress NetFlow accounting. Check that the quick flag is set for prefixes, which indicates capture by MPLS egress NetFlow accounting. For example:

Router# show mpls forwarding-table detail

```
Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface

16 Aggregate 34.0.0.0/8[V] 0

MAC/Encaps=0/0, MTU=0, Tag Stack{}

VPN route: vpn1
Feature Quick flag set
```


As shown above, the quick flag is set for the first two prefixes; therefore, traffic destined for those prefixes is captured by MPLS egress NetFlow accounting.

```
Per-packet load-sharing, slots: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
      Untagged 2.0.0.0/8[V] 0
                                            Et0/0/2
                                                     34.0.0.1
       MAC/Encaps=0/0, MTU=1500, Tag Stack{}
       VPN route: vpn1
       Feature Quick flag set
Per-packet load-sharing, slots: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
      Untagged
                 42.42.42.42/32[V] 4185
                                            Et0/0/2 34.0.0.1
       MAC/Encaps=0/0, MTU=1500, Tag Stack{}
       VPN route: vpn1
       Feature Quick flag set
Per-packet load-sharing, slots: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
      2/33 41.41.41.42 0 AT1/0/0.1 point2point
       MAC/Encaps=4/8, MTU=4470, Tag Stack{2/33(vcd=2)}
       00028847 00002000
       No output feature configured
```


As shown above, the feature is not configured because MPLS egress NetFlow accounting is not enabled on the outgoing interface for this prefix.

```
Per-packet load-sharing, slots: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 Aggregate 39.39.39.39/32[V] 0

Local Outgoing Prefix Bytes tag Outgoing Next Hop tag tag or VC or Tunnel Id switched interface MAC/Encaps=0/0, MTU=0, Tag Stack{}

VPN route: vpn1

No output feature configured

Per-packet load-sharing, slots: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Router#
```

Step 3 show mpls interfaces internal

Use this command to show whether or not MPLS egress NetFlow accounting is enabled on the interface. For example:

Router# show mpls interfaces internal

The "Output_feature_state=0x0" entry indicates that MPLS egress NetFlow accounting is disabled on interface Ethernet 0/0/1.

```
Tag VPI = 1, Control VC = 0/32
Interface Ethernet0/0/2:
    IP tagging enabled (tdp)
    TSP Tunnel tagging not enabled
    Tag Frame Relay Transport tagging not enabled
    Tagging operational
    IP to Tag Fast Feature Switching Vector
    Tag Switching Turbo Feature Vector
    MTU = 1500, status=0x100043, appcount=1
    Output_feature_state=0x1
```


The "Output_feature_state=0x1" entry indicates that MPLS egress NetFlow accounting is enabled on interface Ethernet 0/0/2.

```
Tag VPI = 1, Control VC = 0/32 Interface ATM1/0/0.1:

IP tagging enabled (tdp)
```

Configuration Examples for Configuring MPLS Egress NetFlow Accounting

This section contains the following configuration example for MPLS egress NetFlow accounting:

• Enabling MPLS Egress NetFlow Accounting: Example, page 8

Enabling MPLS Egress NetFlow Accounting: Example

This section contains a sample configuration for the MPLS Egress NetFlow Accounting feature.

The **show ip vrf** command lists the Virtual Private Network (VPN) routing and forwarding instances (VRFs) configured in the router:

```
        Router# show ip vrf
        Default RD
        Interfaces

        Name
        Default RD
        Interfaces

        vpn1
        100:1
        Ethernet1/4

        Loopback1
        vpn3
        300:1
        Ethernet1/2

        Loopback2
        Loopback2
```

In the following example, MPLS Egress NetFlow Accounting is enabled on interface Ethernet 1/4:

```
configure terminal
!
interface ethernet 1/4
  ip address 172.17.24.2 255.255.255.0
  mpls netflow egress
  exit
```

Enter the **show running-config** command to view the current configuration in the router:

```
Router# show running-config
```

```
Building configuration...

Current configuration:
!

version 12.0

service timestamps debug uptime
service timestamps log uptime
no service password-encryption

ip cef
no ip domain-lookup
```

This section of the output shows the VRF being defined and shows that the MPLS Egress NetFlow Accounting feature is enabled:

```
ip vrf vpn1
  rd 100:1
  route-target export 100:1
  route-target import 100:1
!
interface Loopback0
  ip address 10.41.41.41 255.255.255.255
  no ip directed-broadcast
  no ip mroute-cache
!
interface Ethernet1/4
  ip vrf forwarding vpn1
  ip address 172.17.24.2 255.255.255.0
  no ip directed-broadcast
  mpls netflow egress
!
```

Additional References

The following sections provide references related to configuring the MPLS Egress NetFlow Accounting feature.

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
The minimum information about and tasks required for configuring NetFlow and NetFlow Data Export	"Getting Started with Configuring NetFlow and NetFlow Data Export"
Tasks for configuring NetFlow to capture and export network traffic data	"Configuring NetFlow and NetFlow Data Export"
Tasks for configuring Configuring MPLS Aware NetFlow	Configuring MPLS Aware NetFlow
Tasks for configuring NetFlow input filters	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow aggregation caches	"Configuring NetFlow Aggregation Caches"
Tasks for configuring NetFlow BGP next hop support	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
Tasks for configuring NetFlow multicast support	"Configuring NetFlow Multicast Accounting"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring NetFlow Layer 2 and Security Monitoring Exports	"NetFlow Layer 2 and Security Monitoring Exports"
Tasks for configuring the SNMP NetFlow MIB	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
Tasks for configuring the NetFlow MIB and Top Talkers feature	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	_

MIBs

MIBs	MIBs Link
No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFCs	Title
• RFC 1163	Border Gateway Protocol (BGP)
• RFC 1340	Assigned Numbers
• RFC 1918	Address Allocation For Private Internets
• RFC 2547	BGP/MPLS VPNs

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.	http://www.cisco.com/techsupport

Glossary

BGP—Border Gateway Protocol. An interdomain routing protocol that replaces Exterior Gateway Protocol (EGP). A BGP system exchanges reachability information with other BGP systems. BGP is defined by RFC 1163.

BGP/MPLS/VPN—A Virtual Private Network (VPN) solution that uses Multiprotocol Label Switching (MPLS) and Border Gateway Protocol (BGP) to allow multiple remote customer sites to be connected over an IP backbone. Refer to RFC 2547 for details.

CE router—A customer edge router. A router that is part of a customer network and interfaces to a provider edge (PE) router.

customer network—A network that is under the control of an end customer. A customer network can use private addresses as defined in RFC 1918. Customer networks are logically isolated from each other and from the provider network. A customer network is also known as a C network.

egress PE—The provider edge router through which traffic moves from the backbone to the destination Virtual Private Network (VPN) site.

flow—A set of packets with the same source IP address, destination IP address, source/destination ports, and type-of-service, and the same interface on which flow is monitored. Ingress flows are associated with the input interface, and egress flows are associated with the output interface.

ingress PE—The provider edge router through which traffic enters the backbone (provider network) from a Virtual Private Network (VPN) site.

label—A short, fixed length identifier that tells switching nodes how the data (packets or cells) should be forwarded.

MPLS—Multiprotocol Label Switching. An emerging industry standard for the forwarding of packets along normally routed paths (sometimes called MPLS hop-by-hop forwarding).

PE router—A provider edge router. A router at the edge of a provider network that interfaces to customer edge (CE) routers.

provider network—A backbone network that is under the control of a service provider and provides transport among customer sites. A provider network is also known as the P network.

VPN—Virtual Private Network. The result of a router configuration that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

VRF—Virtual Private Network (VPN) routing/forwarding instance. The VRF is a key element in the MPLS VPN technology. VRFs exist on PEs only. A VRF is populated with VPN routes and allows one PE to have multiple routing tables. One VRF is required per VPN on each PE in the VPN.

Feature Information for Configuring MPLS Egress NetFlow Accounting

Table 1 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Release 12.1(5)T or 12.0(3)S or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 1 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 1 Feature Information for Configuring MPLS Egress NetFlow Accounting

Feature Name	Releases	Feature Configuration Information
MPLS Egress NetFlow Accounting	12.1(5)T 12.0(20)S	The MPLS Egress NetFlow Accounting feature allows you to capture IP flow information for packets undergoing MPLS label disposition; that is, packets that arrive on a router as MPLS packets and are transmitted as IP packets.
		The following sections provide information about this feature:
		 MPLS Egress NetFlow Accounting Benefits: Enhanced Network Monitoring and More Accurate Accounting Statistics, page 3
		• MPLS VPN Flow Capture with MPLS Egress NetFlow Accounting, page 3
		• Configuring MPLS Egress NetFlow Accounting, page 4
		• Verifying MPLS Egress NetFlow Accounting Configuration, page 5
		• Enabling MPLS Egress NetFlow Accounting: Example, page 8
		The following commands were introduced or modified by this feature: debug mpls netflow , mpls netflow egress , show mpls forwarding-table , and show mpls interface .

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0807R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

 $\hbox{@ 2008 Cisco Systems, Inc. All rights reserved.}$

Configuring MPLS-aware NetFlow

This module contains information about and instructions for configuring Multiprotocol Label Switching (MPLS)-aware NetFlow. MPLS-aware NetFlow is an extension of the NetFlow accounting feature that provides highly granular traffic statistics for Cisco routers.

NetFlow is a Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

Module History

This module was first published on June 19th, 2006, and last updated on June 19th, 2006.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all features. To find information about feature support and configuration, use the "Feature Information for Configuring MPLS-aware NetFlow" section on page 22.

Contents

- Prerequisites for Configuring MPLS-aware NetFlow, page 2
- Restrictions for Configuring MPLS-aware NetFlow, page 3
- Information About Configuring MPLS-aware NetFlow, page 4
- How to Configure MPLS-aware NetFlow, page 10
- Configuration Examples for MPLS-aware NetFlow, page 16
- Additional References, page 19
- Glossary, page 21
- Feature Information for Configuring MPLS-aware NetFlow, page 22

Prerequisites for Configuring MPLS-aware NetFlow

Before you can configure the MPLS-aware NetFlow feature, you must:

- Configure NetFlow on the label switch router (LSR)
- Configure MPLS on the LSR
- Configure Cisco Express Forwarding (CEF) or Distributed CEF (dCEF) enabled on the LSR and the interfaces that you want to enable NetFlow on.

If you are exporting data to a Cisco NetFlow collector, the following requirements apply:

- NetFlow Version 9 export format configured on the LSR
- NetFlow collector and analyzer capable of using MPLS-aware NetFlow export packets in Version 9 format

Table 1 describes the Cisco 12000 Series Internet Router line card support for Cisco IOS 12.0 S releases of MPLS-aware NetFlow.

Table 1 Cisco 12000 Series Line Card Support for MPLS-aware NetFlow in Cisco IOS 12.0 S Releases

Туре	Line Card
Ethernet	1-Port GE ¹ 8-Port FE ¹ 3-Port GE 1-Port 10-GE Modular GE
Packet Over Sonet (POS)	4-Port OC-3 POS ² 1-Port OC-12 POS ² 1-Port OC-48 POS 4-Port OC-12 POS 4-Port OC-12 POS ISE 1-Port OC-48 POS ISE 4-Port OC-3 POS ISE 8-Port OC-3 POS ISE 16-Port OC-3 POS ISE 1-Port OC-192 POS ES (Edge Release) 4-Port OC-48 POS ES (Edge Release)
Channelized interfaces	1-Port CHOC-12 (DS3) ² 1-Port CHOC-12 (OC-3) ² 6-Port Ch T3 (DS1) ² 2-Port CHOC-3 ² 1-Port CHOC-48 ISE 4-Port CHOC-12 ISE
Electrical interface	6-Port DS3 ² 12-Port DS3 ² 6-Port E3 ² 12-Port E3 ²

Table 1 Cisco 12000 Series Line Card Support for MPLS-aware NetFlow in Cisco IOS 12.0 S Releases (continued)

Туре	Line Card
Dynamic packet transport	1-Port OC-12 DPT ¹ 1-Port OC-48 DPT 4-Port OC-48 DPT 1-Port OC-192 DPT
Asynchronous Transfer Mode (ATM)	4-Port OC-3 ATM ² 1-Port OC-12 ATM ² 8-Port OC-3 STM-1 ATM ²

- 1. This Cisco 12000 Series Internet Router line card does not support MPLS-aware NetFlow.
- This Cisco 12000 Series Internet Router line card supports MPLS-aware NetFlow enabled in either full or sampled mode. Line cards not marked with a footnote character support MPLS-aware NetFlow in sampled mode only. In general, Cisco 12000 line cards support MPLS-aware NetFlow in the same mode as they support NetFlow.

Restrictions for Configuring MPLS-aware NetFlow

Cisco IOS Releases 12.2(14)S, 12.0(22)S, or 12.2(15)T

If your router is running a version of Cisco IOS prior to releases 12.2(14)S, 12.0(22)S, or 12.2(15)T the **ip route-cache flow** command is used to enable NetFlow on an interface.

If your router is running Cisco IOS release 12.2(14)S, 12.0(22)S, 12.2(15)T, or later the **ip flow ingress** command is used to enable NetFlow on an interface.

MPLS-aware NetFlow

The following restrictions apply to the MPLS-aware NetFlow feature for this release:

- No more than three MPLS labels are allowed to be captured and exported for this implementation.
- MPLS-aware NetFlow reports the following fields in MPLS flows as 0: IP next-hop, source and destination Border Gateway Protocol (BGP) autonomous system (AS) numbers, and source and destination prefix masks.
- For MPLS packets that contain non-IP packets under the MPLS label stack, MPLS-aware NetFlow reports the following flow fields as 0: source and destination IP addresses, protocol, ToS, ports, and TCP flags.
- The IP addresses associated with the top label for traffic engineering (TE) tunnel midpoints and Any Transport over MPLS (AToM) are reported as 0.0.0.0.
- The top label type and IP address are obtained at the moment of flow export. Either can be incorrect if the top label was deleted or reassigned after the creation of the flow in the NetFlow cache.
- The following points hold true for the Cisco 12000 1-Port 10-GE, Modular GE, 1-Port OC-192 POS ES (Edge Release), and 4-Port OC-48 POS ES (Edge Release) line cards:
 - MPLS-aware NetFlow samples both IP and MPLS packets, but reports only MPLS packets that
 have one label per packet, ignoring all other packets (that is, IP and MPLS packets with more
 than one label).
 - MPLS-aware NetFlow does not report application (TCP/UDP) port numbers.
 - MPLS-aware NetFlow reports experimental bits in MPLS labels as 0.

 The Cisco 12000 1-Port OC-48 POS, 4-Port OC-12 POS, 16-Port OC-3 POS, 3-Port GE, and 1-Port OC-48 DPT line cards support MPLS-aware NetFlow in sampled mode in all microcode bundles that include IP-sampled NetFlow.

Information About Configuring MPLS-aware NetFlow

The following sections contain useful information for understanding how to configure and use the MPLS-aware NetFlow feature:

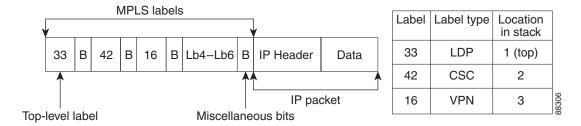
- MPLS-aware NetFlow Overview, page 4
- MPLS Label Stack, page 4
- MPLS-aware NetFlow Capture of MPLS Labels, page 6
- MPLS-aware NetFlow Display of MPLS Labels, page 7
- Information Captured and Exported by MPLS-aware NetFlow, page 8
- Full and Sampled MPLS-aware NetFlow Support, page 9

MPLS-aware NetFlow Overview

MPLS-aware NetFlow is an extension of the NetFlow accounting feature that provides highly granular traffic statistics for Cisco routers. MPLS-aware NetFlow collects statistics on a per-flow basis just as NetFlow does.

A flow is a unidirectional set of packets (IP or MPLS) that arrive at the router on the same subinterface, have the same source and destination IP addresses, the same Layer 4 protocol, the same TCP/UDP source and destination ports, and the same type of service (TOS) byte in the IP header.

An MPLS flow contains up to three of the same incoming MPLS labels of interest with experimental bits and end-of-stack bits in the same positions in the packet label stack. MPLS-aware NetFlow captures MPLS traffic that contains both IP and non-IP packets. It reports non-IP packets, but sets the IP NetFlow fields to 0. It can also be configured to capture and report IP packets, setting to 0 the IP NetFlow fields. MPLS-aware NetFlow uses the NetFlow Version 9 export format. MPLS-aware NetFlow exports up to three labels of interest from the incoming label stack, the IP address associated with the top label, and traditional NetFlow data.


MPLS-aware NetFlow statistics can be used for detailed MPLS traffic studies and analysis that can provide information for a variety of purposes such as MPLS network management, network planning, and enterprise accounting.

A network administrator can turn on MPLS-aware NetFlow inside an MPLS cloud on a subset of provider backbone (P) routers. These routers can export MPLS-aware NetFlow data to an external NetFlow collection device for further processing and analysis or you can display NetFlow cache data on a router terminal.

MPLS Label Stack

As packets move through an MPLS network, LSRs can add labels to the MPLS label stack. LSRs in an MPLS cloud can add up to six labels to the MPLS label stack. An LSR adds the MPLS labels to the top of the IP packet. Figure 1 shows an example of an incoming MPLS label stack that LSRs added to an IP packet as it traversed an MPLS cloud.

Figure 1 Example of an MPLS Label Stack Added to an IP Packet in an MPLS Cloud

In the example of an MPLS label stack in Figure 1:

- The 33 represents the top label of this packet.
 This label was the last label added to the MPLS label stack and the label that MPLS-aware NetFlow captures if you indicate the label of interest as 1.
- The 42 represents the second label in the MPLS stack.
 MPLS-aware NetFlow captures this label if you indicate 2 (second from the top) as a label of interest.
- The 16 represents the third label in the MPLS label stack.
 MPLS-aware NetFlow captures this label if you indicate 3 (third from the top) as a label of interest.
- Lb4–Lb6 represents the fourth to sixth labels in the MPLS stack. LSRs in an MPLS cloud add up to six labels to the MPLS label stack.

MPLS-aware NetFlow captures these labels if you indicate 4, 5, or 6 as labels of interest.

- The B represents miscellaneous bits. These include the following:
 - Exp—Three bits reserved for experimental use
 - S—End-of-stack bits, set to 1 for the last entry in the stack and to 0 for every other entry
 - Time To Live (TTL)—Eight bits used to encode a hop count (or time to live) value

Figure 2 shows a sample Carrier Supporting Carrier (CSC) topology and the incoming MPLS label stack on multiple LSRs as the packet travels through the network. Figure 2 shows what the stack might look like at a provider core LSR.

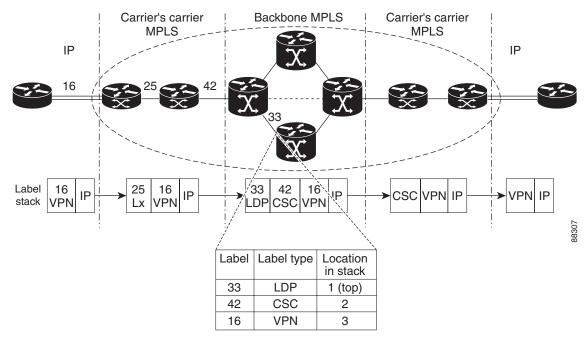


Figure 2 Provider and Customer Networks and MPLS Label Imposition

In the example in Figure 2, a hierarchical VPN is set up between two customer edge (CE) routers.

- Traffic flows from the CE router to a provider edge (PE) router, possibly one belonging to an Internet service provider (ISP). Here, a VPN label (16) is imposed on the inbound IP packet.
- The ISP network eventually connects to an Internet backbone provider where a CSC label (42) is imposed on the label stack.
- As packets traverse the backbone network, a Label Distribution Protocol (LDP) label (33) is imposed on the label stack.

At the inbound interface shown in Figure 2, MPLS-aware NetFlow captures the MPLS label stack and reports that the top label (33) is an LDP label, the second label (42) is a CSC label, and the third label (16) is a VPN label.

With NetFlow and MPLS-aware NetFlow enabled on the P router, you can determine the label type for the specified labels, and the IP address associated with the top label on the incoming interface (see the "MPLS-aware NetFlow Capture of MPLS Labels" section on page 6). Thus, you can track specific types of MPLS traffic, such as TE, LDP, or Virtual Private Networks (VPNs).

MPLS-aware NetFlow Capture of MPLS Labels

When you configure the MPLS-aware NetFlow feature, you select the MPLS label positions in the incoming label stack that you are interested in monitoring. You can capture up to three labels from positions 1 to 6 in the MPLS label stack. Label positions are counted from the top of the stack. For example, the position of the top label is 1, the position of the next label is 2, and so on. You enter the stack location value as an argument to the following command:

ip flow-cache mpls label-positions [label-position-1 [label-position-2
[label-position-3]]]

The *label-position-n* argument represents the position of the label on the incoming label stack. For example, the **ip flow-cache mpls label-positions 1 3 4** command configures MPLS-aware NetFlow to capture and export the first (top), third, and fourth labels. If you enter this command and the label stack consists of two MPLS labels, MPLS-aware NetFlow captures only the first (top) label. If some of the labels you requested are not available, they are not captured or reported.

For this implementation, MPLS-aware NetFlow allows the capture of up to three labels.

In addition to capturing MPLS labels from the label stack, MPLS-aware NetFlow records the following MPLS label information:

- Type of top label—The type can be any of the following: unknown, TE tunnel midpoint, AToM, VPN, BGP, or LDP.
- The IP address associated with the top label—The route prefix to which the label maps.

For this implementation, the IP address for any TE tunnel midpoint or AToM top label is reported as 0.0.0.0.

MPLS-aware NetFlow is enabled globally on the router. However, NetFlow is enabled per interface and must be enabled in either full or sampled mode on the interfaces where you choose to capture and export MPLS and IP NetFlow data.

See Table 1 on page 2 for information on Cisco 12000 Series Internet Router line card support for NetFlow (full and sampled modes).

MPLS-aware NetFlow Display of MPLS Labels

The MPLS-aware NetFlow feature allows the display of a snapshot of the NetFlow cache, including MPLS flows, on a terminal through the use of the **show ip cache verbose flow** command. For example, output like the following from a provider core router (P router) shows position, value, experimental bits, and end-of-stack bit for each MPLS label of interest. It also shows the type of the top label and the IP address associated with the top label.

SrcIf	SrcIPaddres	ss DstIf	DstIPaddress	Pr	TOS	Flg	s Pkts
Port Msk AS		Port Msk AS	NextHop		В	/Pk	Active
PO3/0	10.1.1.1	PO5/1	10.2.1.1	01	00	10	9
0100 /0 0		0200 /0 0	0.0.0.0			100	0.0
Pos:Lbl-Exp-S	1:12305-6-0	(LDP/10.10.10.10)	2:12312-6-1				

In this example from a P router:

- The value of the top label is 12305.
- The experimental bits value is 6 and the end-of-stack bit is 0.
- The label type is LDP and the IP address associated with the label is 10.10.10.10.
- The value of the second label is 12312, the experimental bits value is 6, and the end-of-stack bit is 1.

To fully understand and use the information gathered on the P router, you need information from the label forwarding information base (LFIB) on the PE router.

The MPLS application owner for a label is not reported by MPLS-aware NetFlow for any MPLS label except for the top label. IP information, the label number, and the MPLS application are reported for the top label. Only IP information and the label number are reported for labels other than the top label. Therefore, you need to understand your network if you are interested in identifying the MPLS application owner for labels other than the top MPLS label.

Using MPLS-aware NetFlow, you can monitor various labels in the MPLS label stack. You can also export this information to a NetFlow collector for further processing with a data analyzer and look at MPLS traffic patterns in your network.

Information Captured and Exported by MPLS-aware NetFlow

MPLS-aware NetFlow captures and reports on other information in addition to MPLS labels. It provides per-flow statistics for both incoming IP and MPLS traffic.

- For MPLS traffic, MPLS-aware NetFlow captures and reports up to three labels of interest and the label type and associated IP address of the top label, along with a subset of NetFlow data.
- For IP traffic, MPLS-aware NetFlow provides the regular NetFlow data.

MPLS-aware NetFlow uses Version 9 format to export both IP and MPLS NetFlow data.

MPLS-aware NetFlow provides the following traditional NetFlow per-flow statistics:

- Number of packets
- Number of bytes, counting either MPLS payload size only or MPLS payload size plus MPLS label stack size
- Time stamp of the first packet
- Time stamp of the last packet

In addition to these statistics, MPLS-aware NetFlow exports values for the following fields for each flow, using Version 9 NetFlow export format:

- Regular NetFlow fields:
 - Source IP address
 - Destination IP address
 - Transport layer protocol
 - Source application port number
 - Destination application port number
 - IP type of service (ToS)
 - TCP flags
 - Input interface
 - Output interface

With the exception of the input interface and output interface fields, these regular NetFlow fields are not included in a flow if the **no-ip-fields** keyword is specified in the **ip flow-cache mpls label-positions** command.

- Additional fields:
 - Up to three incoming MPLS labels with experimental bits and an end-of-stack bit
 - Positions of the above labels in the label stack
 - Type of the top label
 - An address prefix associated with the top label specific to the label type:
 TE-This is always set to "0.0.0.0" because tunnel label addresses are not supported.
 LDP-The address prefix is the IP address of the next-hop.
 VPN-If the VRFs do not have overlapping IP addresses, the address prefix is the destination prefix. If the VRFs have overlapping IP addresses the destination prefix given may be ambiguous.

Unlike NetFlow, MPLS-aware NetFlow reports a 0 value for IP next-hop, source and destination BGP autonomous system numbers, or source and destination prefix masks for MPLS packets.

If you are exporting MPLS data to a NetFlow collector or a data analyzer, the collector must support NetFlow Version 9 flow export format, and you must configure NetFlow export in Version 9 format on the router.

Full and Sampled MPLS-aware NetFlow Support

Table 2 shows MPLS-aware NetFlow full and sampled NetFlow support. Information in the table is based on the Cisco IOS release and includes the commands to implement the functionality on a supported platform.

Table 2 MPLS-aware NetFlow Full and Sampled NetFlow Support

Cisco IOS Release	Full or Sampled NetFlow	Cisco 12000 Series Commands to Implement	Cisco 7500/7200 Series Commands to Implement ¹
12.0(24)S	Sampled	ip route-cache flow sampled	
	Full	_	
12.0(26)S	Sampled	ip route-cache flow sampled	flow-sampler-map sampler-map-name
			mode random one-of packet-interval
			interface type number
			flow-sampler sampler-map-name
	Full	_	ip route-cache flow

^{1.} NetFlow sampling on the Cisco 7500/7200 platforms is performed by a feature called Random Sampled NetFlow.

How to Configure MPLS-aware NetFlow

This section contains the following procedures for configuring MPLS-aware NetFlow:

- Configuring MPLS-aware NetFlow on a Router, page 10 (required)
- Configuring Sampling for MPLS-aware NetFlow, page 12 (optional)
- Verifying the NetFlow Sampler Configuration, page 14 (optional)
- Displaying MPLS-aware NetFlow Information on a Router, page 14 (optional)

Configuring MPLS-aware NetFlow on a Router

Perform the steps in this required task to configure MPLS-aware NetFlow on a router.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. **interface** *interface-type interface-number*
- 4. ip flow {ingress}
- 5. exit
- **6.** Repeat Steps 3 through 5 for each interface you want to configure NetFlow on.
- 7. ip flow-export version 9 [origin-as | peer-as] [bgp-nexthop]
- **8. ip flow-cache mpls label-positions** [label-position-1 [label-position-2 [label-position-3]]] [**no-ip-fields**] [**mpls-length**]
- 9. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>interface interface-type interface-number</pre>	(Required) Specifies the interface and enters interface configuration mode.
	<pre>Example: Router(config) # interface pos 3/0</pre>	

	Command or Action	Purpose		
Step 4	<pre>ip flow {ingress}</pre>	(Required) Enables NetFlow on the interface.		
	<pre>Example: Router(config-if)# ip flow ingress</pre>	• ingress—captures traffic that is being received by the interface		
Step 5	exit	(Optional) Exits interface configuration mode and returns to global configuration mode.		
	Example: Router(config-if)# exit	Note You only need to use this command if you want to enable NetFlow on another interface.		
Step 6	Repeat Steps 3 through 5 to enable NetFlow on other interfaces.	(Optional) —		
Step 7	<pre>ip flow-export version 9 [origin-as peer-as] [bgp-nexthop]</pre>	(Optional) Enables the export of information in NetFlow cache entries.		
	Example:	• The version 9 keyword specifies that the export packet uses the Version 9 format.		
	<pre>Router(config)# ip flow-export version 9 origin-as</pre>	• The origin-as keyword specifies that export statistics include the origin autonomous system (AS) for the source and destination.		
		• The peer-as keyword specifies that export statistics include the peer AS for the source and destination.		
		• The bgp-nexthop keyword specifies that export statistics include BGP next hop related information.		
		Entering this command on a Cisco 12000 Series Internet Router causes packet forwarding to stop for a few seconds while NetFlow reloads the route processor and line card CEF tables. To avoid interruption of service to a live network, apply this command during a change window, or include it in the startup-config file to be executed during a router reboot.		

	Command or Action	Purpose
Step 8	ip flow-cache mpls label-positions	(Required) Enables MPLS-aware NetFlow.
	<pre>[label-position-1 [label-position-2 [label-position-3]]] [no-ip-fields] [mpls-length]</pre>	• The <i>label-position-n</i> argument identifies the position of an MPLS label of interest in the incoming label stack. Label positions are counted from the top of the stack, starting with 1.
	<pre>Example: Router(config) # ip flow-cache mpls label-positions 1 2 3</pre>	• The no-ip-fields keyword controls the capture and reporting of MPLS flow fields. If the no-ip-fields keyword is specified, the following IP-related flow fields are not included:
		 Source IP address
		 Destination IP address
		 Transport layer protocol
		 Source application port number
		 Destination application port number
		- IP type of service (ToS)
		- TCP flag (the result of a bitwise OR of TCP)
		If the no-ip-fields keyword is not specified, the IP related fields are captured and reported.
		• The mpls-length keyword controls the reporting of packet length. If the mpls-length keyword is specified, the reported length represents the sum of the MPLS packet payload length and the MPLS label stack length.
		If the mpls-length keyword is not specified, only the length of the MPLS packet payload is reported.
Step 9	exit	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config) # exit</pre>	

Configuring Sampling for MPLS-aware NetFlow

Perform the steps in this optional task to configure sampling for MPLS-aware NetFlow.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. flow-sampler-map sampler-map-name
- 4. mode random one-out-of packet-interval
- 5. exit
- **6. interface** *interface-type interface-number*

- 7. flow-sampler sampler-map-name
- 8. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	flow-sampler-map sampler-map-name	(Required) Defines a named object representing a NetFlow sampler.
	<pre>Example: Router(config) # flow-sampler-map mysampler</pre>	• The <i>sampler-map-name</i> argument is the name of the NetFlow sampler.
Step 4	mode random one-out-of packet-interval	(Required) Specifies the sampling mode for the NetFlow sampler.
	<pre>Example: Router(config-sampler-map) # mode random one-out-of 100</pre>	• The random keyword specifies the random sampling mode.
	one out of 100	• The one-out-of <i>packet-interval</i> keyword argument combination defines the interval selected for random sampling. The packet interval is from 1 to 65535.
Step 5	exit	(Required) Exits sampler map configuration mode and returns to global configuration mode.
	<pre>Example: Router(config-sampler-map)# exit</pre>	
Step 6	interface interface-type interface-number	(Required) Specifies the interface that you want to enable NetFlow on and enters interface configuration mode.
	<pre>Example: Router(config)# interface ethernet 0/0</pre>	
Step 7	flow-sampler sampler-map-name	(Required) Enables sampled NetFlow accounting on the interface.
	<pre>Example: Router(config-if)# flow-sampler mysampler</pre>	• The <i>sampler-map-name</i> argument is the name of the NetFlow sampler.
Step 8	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

Troubleshooting Tips

Use the **show-sampler** *sampler-map-name* command to verify the configuration of NetFlow sampling, including the NetFlow sampling mode, sampling mode parameters, and number of packets sampled by the NetFlow sampler.

For more information on NetFlow export sampling, see the "Using NetFlow Filtering or Sampling to Select the Network Traffic to Track" module.

Verifying the NetFlow Sampler Configuration

Perform the steps in this optional task to verify the NetFlow sampler configuration on your router:

SUMMARY STEPS

- 1. **show flow-sampler** [sampler-map-name]
- 2. show flow sampler

DETAILED STEPS

Step 1 show flow-sampler [sampler-map-name]

Use this command to verify the following information about a specific NetFlow sampler: sampling mode, sampling parameters (such as packet sampling interval), and number of packets selected by the sampler for NetFlow processing. For example:

```
Router# show flow-sampler mysampler

Sampler: mysampler, id: 1, packets matched: 10, mode: random sampling mode sampling interval is: 100
```

Step 2 show flow-sampler

Use the following command to verify the configuration for all Netflow samplers on the router:

```
Router# show flow-sampler

Sampler: mysampler, id: 1, packets matched: 10, mode: random sampling mode sampling interval is: 100

Sampler: mysampler1, id: 2, packets matched: 5, mode: random sampling mode sampling interval is: 200
```

Displaying MPLS-aware NetFlow Information on a Router

Perform the steps in this optional task to display a snapshot of the MPLS-aware NetFlow cache on a router.

SUMMARY STEPS

1. enable

- **2. attach** *slot-number* (Cisco 12000 series routers only) or **if-con** *slot-number* (Cisco 7500 series routers only)
- 3. show ip cache verbose flow
- 4. show ip cache flow
- 5. exit (Cisco 12000 Series Internet routers only) or if-quit (Cisco 7500 series routers only)

DETAILED STEPS

Step 1 enable

Use this command to enable privileged EXEC mode. Enter your password if required. For example:

```
Router> enable Router#
```

Step 2 attach *slot-number* (Cisco 12000 Series Internet routers only) or **if-con** *slot-number* (Cisco 7500 series routers only)

Use the **attach** command to access the Cisco IOS on the line card of a Cisco 12000 Series Internet Router. For example:

```
Router# attach 3 LC-Slot3#
```

Use the **if-con** command to access the Cisco IOS on the line card of a Cisco 7500 series router. For example:

```
Router# if-con 3
LC-Slot3#
```

Step 3 show ip cache verbose flow

Use this command to display IP and MPLS flow records in the NetFlow cache on a Cisco 12000 Series Internet Router or Cisco 7500 series router. For example:

LC-Slot3# show ip cache verbose flow

• • •							
SrcIf	SrcIPaddres	s DstIf	DstIPaddress	Pr	TOS	Flg	s Pkts
Port Msk AS		Port Msk AS	NextHop		В	/Pk	Active
PO3/0	10.1.1.1	PO5/1	10.2.1.1	01	00	10	9
0100 /0 0		0200 /0 0	0.0.0.0			100	0.0
Pos:Lbl-Exp-S	1:12305-6-0	(LDP/10.10.10.10)	2:12312-6-1				

In this example, the value of the top label is 12305, the experimental bits value is 6, and the end-of-stack bit is 0. The label is LDP and it has an associated IP address of 10.10.10.10. The value of the next from the top label is 12312, the experimental bits value is 6, and the end-of-stack bit is 1. The 1 indicates that this is the last MPLS label in the stack.

Use this command to display IP and MPLS flow records in the NetFlow cache on a Cisco 7200 series router. For example:

Router# show ip cache verbose flow

SrcIf	SrcIPaddress	DstIf		DstIPaddress	Pr	TOS Flg	s Pkts
Port Msk AS		Port Msk A	AS	NextHop		B/Pk	Active
PO3/0	10.1.1.1	PO5/1		10.2.1.1	01	00 10	9
0100 /0 0		0200 /0 (0	0.0.0.0		100	0.0
Pos:Lbl-Exp-S	1:12305-6-0 (LI	P/10.10.10.3	10)	2:12312-6-1			

In this example, the value of the top label is 12305, the experimental bits value is 6, and the end-of-stack bit is 0. The label is LDP and has an associated IP address of 10.10.10.10. The value of the next from the top label is 12312, the experimental bits value is 6, and the end-of-stack bit is 1. The 1 indicates that this is the last MPLS label in the stack.

Step 4 show ip cache flow

Use this command to display a summary of the IP and MPLS flow records in the NetFlow cache on a Cisco 12000 Series Internet Router or Cisco 7500 series router. For example, the following output of the **show ip cache flow** command shows the IP portion of the MPLS flow record in the NetFlow cache:

LC-Slot3# show ip cache flow

• • •						
SrcIf	SrcIPaddress	DstIf	DstIPaddress	Pr	SrcP DstP	Pkts
PO3/0	10.1.1.1	PO5/1	10.2.1.1	01	0100 0200	9

Use this command to display a summary of the IP and MPLS flow records in the NetFlow cache on a Cisco 7200 series router. For example:

Router# show ip cache flow

```
...
SrcIf SrcIPaddress DstIf DstIPaddress Pr SrcP DstP Pkts
P03/0 10.1.1.1 P05/1 10.2.1.1 01 0100 0200 9
```

Step 5 exit (Cisco 12000 series routers only) or if-quit (Cisco 7500 series routers only)

Use the **exit** command to exit from the line card to privileged EXEC mode of a Cisco 12000 Series Internet Router. For example:

```
LC-Slot3# exit
Router#
```

Use the **if-quit** command to exit from the line card to privileged EXEC mode of a Cisco 7500 Series Router. For example:

```
LC-Slot3# if-quit
Router#
```

Configuration Examples for MPLS-aware NetFlow

This section contains the following configuration examples for MPLS-aware NetFlow:

- Configuring MPLS-aware NetFlow on a Router: Examples, page 16
- Configuring Sampling for MPLS-aware NetFlow: Examples, page 18

Configuring MPLS-aware NetFlow on a Router: Examples

The following example shows MPLS-aware NetFlow configured globally and NetFlow enabled on an interface on a Cisco 12000 series P router with Cisco IOS Release 12.0(24)S and later:

```
configure terminal
!
interface pos 3/0
  ip address 10.10.10.2 255.255.255.0
  ip route-cache flow sampled
  exit
!
ip flow-export version 9 origin-as
ip flow-sampling-mode packet-interval 101
ip flow-cache mpls label-positions 1 2 3
exit
```

The following examples show MPLS-aware NetFlow configured globally and NetFlow enabled on an interface on a Cisco 7200 or 7500 series P router with Cisco IOS 12.0S releases:

```
configure terminal
!
interface pos 3/0
  ip address 10.10.10.2 255.255.255.0
  ip route-cache flow sampled
  exit
!
ip flow-export version 9 origin-as
ip flow-sampling-mode packet-interval 101
ip flow-cache mpls label-positions 1 2 3
exit
```

The following examples show MPLS-aware NetFlow configured globally and NetFlow enabled on an interface on a router with a Cisco IOS Release 12.2(14)S, 12.2(15)T, or 12.0(22)S or later:

```
configure terminal
!
interface pos 3/0
  ip address 10.10.10.2 255.255.255.0
  ip flow ingress
  exit
!
ip flow-export version 9 origin-as
ip flow-sampling-mode packet-interval 101
ip flow-cache mpls label-positions 1 2 3
exit
```

To export MPLS-aware NetFlow data from the router, you need to configure NetFlow Version 9 export format. This example shows the NetFlow Version 9 export format configuration options for MPLS-aware NetFlow and IP NetFlow data export along with an explanation of what each command configures:

configure terminal ip flow-export version 9 origin-as	Enters global configuration mode and requests Version 9 flow export, reports origin-as for IP packets.
ip flow-export template options sampling	Specifies the template option sampling configuration.
ip flow-export template options export-stats	Reports the number of export packets sent and the number of flows exported.
ip flow-export template options timeout 5	Exports template options every 5 minutes.
ip flow-export template timeout 5	Resends templates to the collector every 5 minutes.
ip flow-export destination 10.21.32.25 9996	Specifies export destination and UDP port.

ip flow-export source Loopback0	Specifies export source.
ip flow-sampling-mode packet-interval 101	Configures the sampling mode packet interval.
ip flow-cache mpls label-positions 1 2 3	Configured the MPLS-aware NetFlow feature to report the top 3 labels.
interface pos 3/0 ip route-cache flow [sampled] end	Enables full or sampled IP and MPLS-aware NetFlow on interface POS 3/0 and returns to privileged EXEC mode.
	Note The combination of sampled IP and MPLS-aware NetFlow is supported on the Cisco 12000 Series Internet Router only.

Configuring Sampling for MPLS-aware NetFlow: Examples

The following examples show how to define a Netflow sampler that randomly selects 1 out of 100 packets for NetFlow processing, and how to apply this sampler to an interface on a Cisco 7500 or 7200 series router.

Defining the NetFlow Sampler

The following example shows how to define a NetFlow sampler called mysampler that randomly selects 1 out of 100 packets for NetFlow processing:

```
configure terminal
!
flow-sampler-map mysampler
  mode random one-out-of 100
  end
exit
```

Applying the NetFlow Sampler to an Interface

The following example shows how to apply the NetFlow sampler named mysampler to an interface:

```
configure terminal
!
interface FastEthernet 2/0
  flow-sampler mysampler
  end
exit
```

Additional References

The following sections provide references related to configuring MPLS-aware NetFlow.

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
The minimum information about and tasks required for configuring NetFlow and NetFlow Data Export	"Getting Started with Configuring NetFlow and NetFlow Data Export"
Tasks for configuring NetFlow to capture and export network traffic data	"Configuring NetFlow and NetFlow Data Export"
Tasks for configuring MPLS egress NetFlow accounting	Configuring MPLS Egress NetFlow Accounting and Analysis
Tasks for configuring NetFlow input filters	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow aggregation caches	"Configuring NetFlow Aggregation Caches"
Tasks for configuring NetFlow BGP next hop support	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
Tasks for configuring NetFlow multicast support	"Configuring NetFlow Multicast Accounting"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring NetFlow Layer 2 and Security Monitoring Exports	"NetFlow Layer 2 and Security Monitoring Exports"
Tasks for configuring the SNMP NetFlow MIB	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
Tasks for configuring the NetFlow MIB and Top Talkers feature	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
The IETF working group, IP Flow Information Export (ipfix), is developing a standard that this feature will support.	_

MIBs

MIBs	MIBs Link
. 11	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content,	http://www.cisco.com/techsupport
including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users	
can log in from this page to access even more content.	

Glossary

AToM—Any Transport over MPLS. A protocol that provides a common framework for encapsulating and transporting supported Layer 2 traffic types over a Multiprotocol Label Switching (MPLS) network core.

BGP—Border Gateway Protocol. An interdomain routing protocol that replaces Exterior Gateway Protocol (EGP). A BGP system exchanges reachability information with other BGP systems. It is defined by RFC 1163.

CE router—customer edge router. A router that is part of a customer network and that interfaces to a provider edge (PE) router. CE routers do not have routes to associated Virtual Private Networks (VPNs) in their routing tables.

core router—In a packet-switched star topology, a router that is part of the backbone and that serves as the single pipe through which all traffic from peripheral networks must pass on its way to other peripheral networks.

EGP—Exterior Gateway Protocol. Internet protocol for exchanging routing information between autonomous systems. It is documented in RFC 904. This term is not to be confused with the general term exterior gateway protocol. EGP is an obsolete protocol that was replaced by Border Gateway Protocol (BGP).

export packet—(NetFlow) A packet from a device (for example, a router) with NetFlow services enabled that is addressed to another device (for example, a NetFlow collector). This other device processes the packet (parses, aggregates, and stores information on IP flows).

FEC—Forward Equivalency Class. A set of packets that can be handled equivalently for the purpose of forwarding and thus is suitable for binding to a single label. The set of packets destined for an address prefix is one example of an FEC. A flow is another example.

flow—A unidirectional set of packets (IP or Multiprotocol Label Switching [MPLS]) that arrive at the router on the same subinterface and have the same source and destination IP addresses, the same Layer 4 protocol, the same TCP/UDP source and destination ports, and the same type of service (ToS) byte in the IP header.

IPv6—IP Version 6. Replacement for the current version of IP (Version 4). IPv6 includes support for flow ID in the packet header, which can be used to identify flows. Formerly called IPng (next generation).

label—A short, fixed-length identifier that tells switching nodes how the data (packets or cells) should be forwarded.

label imposition—The act of putting a label or labels on a packet.

LDP—Label Distribution Protocol. A standard protocol that operates between Multiprotocol Label Switching (MPLS)-enabled routers to negotiate the labels (addresses) used to forward packets. The Cisco proprietary version of this protocol is the Tag Distribution Protocol (TDP).

LFIB—label forwarding information base. A data structure and way of managing forwarding in which destinations and incoming labels are associated with outgoing interfaces and labels.

LSR—label switch router. A router that forwards packets in a Multiprotocol Label Switching (MPLS) network by looking only at the fixed-length label.

MPLS—Multiprotocol Label Switching. A switching method in which IP traffic is forwarded through use of a label. This label instructs the routers and the switches in the network where to forward the packets. The forwarding of MPLS packets is based on preestablished IP routing information.

MPLS flow—A unidirectional sequence of Multiprotocol Label Switching (MPLS) packets that arrive at a router on the same subinterface and have the same source and destination IP addresses, the same Layer 4 protocol, the same TCP/UDP source and destination ports, and the same type of service (ToS) byte in the IP header. A TCP session is an example of a flow.

packet header— (NetFlow) The first part of an export packet that provides basic information about the packet, such as the NetFlow version, number of records contained within the packet, and sequence numbering. The header information enables lost packets to be detected.

PE router—provider edge router. A router that is part of a service provider's network connected to a customer edge (CE) router. All Virtual Private Network (VPN) processing occurs in the PE router.

Prouter—provider core or backbone router. A router that is part of a service provider's core or backbone network and is connected to the provider edge (PE) routers.

TDP—Tag Distribution Protocol. The Cisco proprietary version of the protocol (label distribution protocol) between Multiprotocol Label Switching (MPLS)-enabled routers to negotiate the labels (addresses) used to forward packets.

TE—traffic engineering. Techniques and processes that cause routed traffic to travel through the network on a path other than the one that would have been chosen if standard routing methods were used.

TE tunnel—traffic engineering tunnel. A label-switched tunnel that is used for traffic engineering. Such a tunnel is set up through means other than normal Layer 3 routing; it is used to direct traffic over a path different from the one that Layer 3 routing could cause the tunnel to take.

VPN—Virtual Private Network. A secure IP-based network that shares resources on one or more physical networks. A VPN contains geographically dispersed sites that can communicate securely over a shared backbone.

Feature Information for Configuring MPLS-aware NetFlow

Table 3 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Release 12.2(1) or 12.0(3)S or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 3 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 3 Feature Information for Configuring MPLS-aware NetFlow

Feature Name	Releases	Feature Configuration Information
MPLS-aware NetFlow	12.0(24)S, 12.0(25)S, 12.0(26)S, 12.0(26)S1, 12.3(8)T	Multiprotocol Label Switching (MPLS)-aware NetFlow is an extension of the NetFlow accounting feature that provides highly granular traffic statistics for Cisco routers. MPLS-aware NetFlow collects statistics on a per-flow basis just as NetFlow does. MPLS-aware NetFlow uses the NetFlow Version 9 export format.
		The following sections provide information about this feature:
		MPLS-aware NetFlow Overview, page 4
		• MPLS Label Stack, page 4
		• MPLS-aware NetFlow Capture of MPLS Labels, page 6
		• MPLS-aware NetFlow Display of MPLS Labels, page 7
		• Information Captured and Exported by MPLS-aware NetFlow, page 8
		• Full and Sampled MPLS-aware NetFlow Support, page 9
		 Configuring MPLS-aware NetFlow on a Router, page 10
		 Configuring Sampling for MPLS-aware NetFlow, page 12
		• Verifying the NetFlow Sampler Configuration, page 14
		• Displaying MPLS-aware NetFlow Information on a Router, page 14
		The following commands were modified by this feature: ip flow-cache mpls label-positions and show ip cache verbose flow.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0805R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Feature Information for Configuring MPLS-aware NetFlow

Configuring NetFlow Multicast Accounting

This document contains information about and instructions for configuring NetFlow multicast accounting. NetFlow multicast accounting allows you to capture multicast-specific data (both packets and bytes) for multicast flows.

NetFlow is a Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

Module History

This module was first published on June 19th, 2006, and last updated on April 21st, 2008.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all features. To find information about feature support and configuration, use the "Feature Information for Configuring NetFlow Multicast Accounting" section on page 14 to find information about feature support and configuration.

Contents

This document includes the following sections:

- Prerequisites for Configuring NetFlow Multicast Accounting, page 2
- Restrictions for Configuring NetFlow Multicast Accounting, page 2
- Information About Configuring NetFlow Multicast Accounting, page 2
- How to Configure NetFlow Multicast Accounting, page 3
- Configuration Examples for NetFlow Multicast Accounting, page 9
- Additional References, page 11
- Glossary, page 13
- Feature Information for Configuring NetFlow Multicast Accounting, page 14

Prerequisites for Configuring NetFlow Multicast Accounting

Before you can configure NetFlow multicast accounting, you must:

- Configure the router for IP routing
- Configure Multicast fast switching or multicast distributed fast switching (MDFS); multicast Cisco Express Forwarding (CEF) switching is not supported.
- Configure Multicast routing.
- Configure NetFlow v9 (Version 9) data export (otherwise, multicast data is visible in the cache but is not exported).

Restrictions for Configuring NetFlow Multicast Accounting

Memory Impact

If traffic is heavy, the additional flows might fill the global flow hash table. If you must increase the size of the global flow hash table, you must also add memory to the router.

NetFlow has a maximum cache size of 65,536 flow record entries of 64 bytes each. To deduce the packet-replication factor, multicast accounting adds 16 bytes (for a total of 80 bytes) to each multicast flow record.

Performance Impact

Ingress multicast accounting does not greatly affect performance. Because of the additional accounting-related computation that occurs in the traffic-forwarding path of the router, egress NetFlow multicast accounting might degrade network performance slightly, but it does not limit the functionality of the router.

Multicast Addresses

NetFlow data cannot be exported to multicast addresses.

Information About Configuring NetFlow Multicast Accounting

To configure NetFlow multicast accounting, you must understand the following concepts:

- NetFlow Multicast Benefits, page 2
- Multicast Ingress and Multicast Egress Accounting, page 3
- NetFlow Multicast Flow Records, page 3

NetFlow Multicast Benefits

NetFlow multicast allows you to capture multicast-specific data (both packets and bytes) for multicast flows. For example, you can capture the packet-replication factor for a specific flow as well as for each outgoing stream. NetFlow multicast provides complete end-to-end usage information about network traffic for a complete multicast traffic billing solution.

You can use NetFlow multicast accounting to identify and count multicast packets on the ingress side or the egress side (or both sides) of a router. Multicast ingress accounting provides information about the source and how many times the traffic was replicated. Multicast egress accounting monitors the destination of the traffic flow.

NetFlow multicast lets you enable NetFlow statistics to account for all packets that fail the reverse path forwarding (RPF) check and that are dropped in the core of the service provider network. Accounting for RPF-failed packets provides more accurate traffic statistics and patterns.

Multicast Ingress and Multicast Egress Accounting

NetFlow multicast lets you select either multicast ingress accounting, in which a replication factor (equal to the number of output interfaces) indicates the load, or multicast egress accounting, in which all outgoing multicast streams are counted as separate streams, or both multicast ingress and multicast egress accounting.

NetFlow multicast lets you collect information about how much data is leaving the interfaces of the router (egress and multicast ingress accounting) or how much multicast data is received (multicast ingress accounting).

On the ingress side, multicast packets are counted as with unicast packets, but with two additional fields (for number of replicated packets and byte count). With multicast ingress accounting, the destination interface field is set to null, and the IP next hop field is set to 0 for multicast flows.

NetFlow Multicast Flow Records

Multicast ingress accounting creates one flow record that indicates how many times each packet is replicated. Multicast egress accounting creates a unique flow record for each outgoing interface.

How to Configure NetFlow Multicast Accounting

Perform the following tasks to configure NetFlow multicast accounting:

- Configuring NetFlow Multicast Accounting in Cisco IOS Releases 12.4(12), 12.4(11)T, 12.2(33)SRB, 12.2(33)SXH, 12.2(33)SB, and Newer Releases, page 3
- Configuring NetFlow Multicast Accounting in Cisco IOS Releases Prior to 12.4(12), 12.4(11)T, 12.2(33)SRB, 12.2(33)SXH, and 12.2(33)SB, page 5
- Verifying the NetFlow Multicast Accounting Configuration, page 8 (optional)

Configuring NetFlow Multicast Accounting in Cisco IOS Releases 12.4(12), 12.4(11)T, 12.2(33)SRB, 12.2(33)SXH, 12.2(33)SB, and Newer Releases

Perform the steps in this required task to configure NetFlow multicast accounting.

Prerequisites

You must have already configured IP multicast on the networking devices in your network. See the *Cisco IOS IP Multicast Configuration Guide*, for more information on configuring IP multicast.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip multicast-routing [vrf vrf-name] [distributed]
- 4. ip multicast netflow rpf-failure
- 5. ip multicast netflow output-counters
- **6. interface** *type number*
- 7. ip flow ingress
- 8. end

DETAILED STEPS

	Command	Purpose
Step 1	enable	Enters privileged EXEC mode.
		Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>ip multicast-routing [vrf vrf-name]</pre>	Enables IP multicast routing.
	[distributed] Example:	• The vrf keyword supports the multicast Virtual Private Network (VPN) routing/forwarding instance (VRF).
	Router(config)# ip multicast-routing	• The <i>vrf-name</i> argument is the name assigned to the VRF.
		• The distributed keyword enables Multicast Distributed Switching (MDS).
Step 4	ip multicast netflow rpf-failure	Enables accounting for multicast data that fails the RPF check.
	<pre>Example: Router(config)# ip multicast netflow rpf-failure</pre>	
Step 5	ip multicast netflow output-counters	Enables accounting for the number of bytes and packets forwarded.
	<pre>Example: Router(config) # ip multicast netflow output-counters</pre>	
Step 6	interface type number	Specifies the interface and enters interface configuration mode.
	<pre>Example: Router(config) # interface fastethernet 0/0</pre>	

	Command	Purpose
Step 7	ip flow ingress	Enables NetFlow ingress accounting.
	Example:	
	Router(config-if)# ip flow ingress	
Step 8	end	Exits the current configuration mode and returns to
		privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Troubleshooting Tips

If there are no multicast flow records in the NetFlow cache, check the multicast switching counters for the existence of process-switched packets (NetFlow exports only fast-switched or MDFS-switched packets). If process-switched packets are present, check the MDFS routing table to help determine potential problems.

Configuring NetFlow Multicast Accounting in Cisco IOS Releases Prior to 12.4(12), 12.4(11)T, 12.2(33)SRB, 12.2(33)SXH, and 12.2(33)SB

- Configuring NetFlow Multicast Egress Accounting, page 5
- Configuring NetFlow Multicast Ingress Accounting, page 7

Configuring NetFlow Multicast Egress Accounting

Perform the steps in this required task to configure NetFlow multicast egress accounting.

Prerequisites

You must have already configured IP multicast on the networking devices in your network. See the *Cisco IOS IP Multicast Configuration Guide*, for more information on configuring IP multicast.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip multicast-routing [vrf vrf-name] [distributed]
- 4. ip multicast netflow rpf-failure
- 5. interface type number
- 6. ip multicast netflow egress
- 7. end

DETAILED STEPS

	Command	Purpose
Step 1	enable	Enters privileged EXEC mode.
		Enter your password if prompted.
	Example:	
Step 2	Router> enable configure terminal	Enters global configuration mode.
Otep 2	Configure Cerminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	ip multicast-routing [vrf vrf-name]	Enables IP multicast routing.
	[distributed] Example:	• The vrf keyword supports the multicast Virtual Private Network (VPN) routing/forwarding instance (VRF).
	Router(config)# ip multicast-routing	• The <i>vrf-name</i> argument is the name assigned to the VRF.
		• The distributed keyword enables Multicast Distributed Switching (MDS).
Step 4	ip multicast netflow rpf-failure	Enables accounting for multicast data that fails the RPF check.
	<pre>Example: Router(config)# ip multicast netflow rpf-failure</pre>	
Step 5	interface type number	Specifies the interface and enters interface configuration mode.
	<pre>Example: Router(config) # interface fastethernet 0/0</pre>	
Step 6	ip multicast netflow egress	Enables NetFlow multicast egress accounting.
	<pre>Example: Router(config-if)# ip multicast netflow egress</pre>	
Step 7	end	Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

Troubleshooting Tips

If there are no multicast flow records in the NetFlow cache, check the multicast switching counters for the existence of process-switched packets (NetFlow exports only fast-switched or MDFS-switched packets). If process-switched packets are present, check the MDFS routing table to help determine potential problems.

Configuring NetFlow Multicast Ingress Accounting

Perform the steps in this required task to configure NetFlow multicast ingress accounting. Multicast ingress NetFlow accounting is enabled by default.

Prerequisites

You must have already configured IP multicast on the networking devices in your network. See the *Cisco IOS IP Multicast Configuration Guide*, for more information on configuring IP multicast.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip multicast-routing [vrf vrf-name] [distributed]
- 4. ip multicast netflow rpf-failure
- **5. interface** *type number*
- 6. ip multicast netflow ingress
- 7. end

DETAILED STEPS

	Command	Purpose
Step 1	enable	Enters privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>ip multicast-routing [vrf vrf-name]</pre>	Enables IP multicast routing.
	[distributed]	• The vrf keyword supports the multicast VRF.
	<pre>Example: Router(config)# ip multicast-routing</pre>	The <i>vrf-name</i> argument is the name assigned to the VRF.
		• The distributed keyword enables Multicast Distributed Switching (MDS).
Step 4	ip multicast netflow rpf-failure	Enables accounting for multicast data that fails the RPF check.
	Example:	
	Router(config)# ip multicast netflow rpf-failure	

	Command	Purpose	
Step 5	interface type number	Specifies the interface and enters interface configuration mode.	
	Example:		
	Router(config)# interface fastethernet 0/0		
Step 6	ip multicast netflow ingress	Enables NetFlow multicast ingress accounting.	
	<pre>Example: Router(config-if)# ip multicast netflow ingress</pre>		
Step 7	end	Exits the current configuration mode and returns to privileged EXEC mode.	
	<pre>Example: Router(config-if)# end</pre>		
	router (contrig-ir)# end		

Troubleshooting Tips

If there are no multicast flow records in the NetFlow cache, check the multicast switching counters for the existence of process-switched packets (NetFlow exports only fast-switched or MDFS-switched packets). If process-switched packets are present, check the MDFS routing table to help determine potential problems.

Verifying the NetFlow Multicast Accounting Configuration

Perform the steps in this optional task to verify the NetFlow multicast accounting configuration.

SUMMARY STEPS

- 1. enable
- 2. show ip cache verbose flow

DETAILED STEPS

Step 1 enable

Use this command to enable privileged EXEC mode. Enter your password if required. For example:

```
Router> enable Router#
```

Step 2 show ip cache verbose flow

Use this command to verify that NetFlow multicast accounting is configured. Look for the two additional fields related to multicast data, that is, the number of IP multicast output packet and byte counts. For example:

Router# show ip cache verbose flow

```
IP packet size distribution (5149 total packets):
   1-32  64  96  128  160  192  224  256  288  320  352  384  416  448  480
   .997  .002  .000  .000  .000  .000  .000  .000  .000  .000  .000  .000
   512  544  576  1024  1536  2048  2560  3072  3584  4096  4608
```

```
.000 .000 .000 .000 .000 .000 .000 .000 .000
IP Flow Switching Cache, 278544 bytes
 2 active, 4094 inactive, 14 added
 468 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 25800 bytes
 1 active, 1023 inactive, 1 added, 1 added to flow
 O alloc failures, O force free
 1 chunk, 1 chunk added
 last clearing of statistics never
             Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)
Protocol
              Flows
                      /Sec /Flow /Pkt /Sec /Flow
                                                            /Flow
UDP-other
               12
                      0.0
                               1 52
                                            0.0
                                                    0.1
                                                            15.6
Total:
                12
                      0.0
                                  1 52
                                            0.0
                                                     0.1
                                                             15.6
            SrcIPaddress
SrcIf
                          DstIf
                                       DstIPaddress Pr TOS Flgs Pkts
                          Port Msk AS
                                                         B/Pk Active
Port Msk AS
                                      NextHop
IPM: OPkts
            OBvtes
            10.1.1.1
E+0/0
                          Null
                                      224.192.16.1 01 55 10
                                                               5164
                          0000 /0 0 0.0.0.0
0000 /0 0
                                                           20 262.8
IPM: 15K 309K
Et0/0
           10.1.1.1
                         Null
                                       255.255.255.255 11 CO 10
0208 /0 0
                          0208 /0 0
                                       0.0.0.0
                                                           52
                                                                 0.0
Router#
```

The Opkts column displays the number of IP multicast (IPM) output packets, the OBytes column displays the number of IPM output bytes, and the DstIPaddress column displays the destination IP address for the IPM output packets.

Configuration Examples for NetFlow Multicast Accounting

This section provides the following configuration examples for NetFlow multicast accounting:

- Configuring NetFlow Multicast Accounting in Cisco IOS Releases 12.4(12), 12.4(11)T, 12.2(33)SRB, 12.2(33)SXH, 12.2(33)SB, and Newer Releases, page 9
- Configuring NetFlow Multicast Accounting in Cisco IOS Releases Prior to 12.4(12), 12.4(11)T, 12.2(33)SRB, 12.2(33)SXH, and 12.2(33)SB, page 10

Configuring NetFlow Multicast Accounting in Cisco IOS Releases 12.4(12), 12.4(11)T, 12.2(33)SRB, 12.2(33)SXH, 12.2(33)SB, and Newer Releases

The following example shows how to configure multicast NetFlow accounting:

```
configure terminal
  ip multicast-routing
  ip multicast netflow rpf-failure
  ip multicast netflow output-counters
!
interface ethernet 0/0
  ip flow ingress
end
```

Configuring NetFlow Multicast Accounting in Cisco IOS Releases Prior to 12.4(12), 12.4(11)T, 12.2(33)SRB, 12.2(33)SXH, and 12.2(33)SB

- Configuring NetFlow Multicast Egress Accounting: Example, page 10
- Configuring NetFlow Multicast Ingress Accounting: Example, page 10

Configuring NetFlow Multicast Egress Accounting: Example

The following example shows how to configure multicast egress NetFlow accounting on the egress Ethernet 0/0 interface:

```
configure terminal
  ip multicast-routing
  ip multicast netflow rpf-failure
!
interface ethernet 0/0
  ip multicast netflow egress
  end
```

Configuring NetFlow Multicast Ingress Accounting: Example

The following example shows how to configure multicast ingress NetFlow accounting on the ingress Ethernet 1/0 interface:

```
configure terminal
  ip multicast-routing
  ip multicast netflow rpf-failure
!
interface ethernet 1/0
  ip multicast netflow ingress
  end
```

Additional References

The following sections provide references related to configuring NetFlow multicast accounting:

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
The minimum information about and tasks required for configuring NetFlow and NetFlow Data Export	"Getting Started with Configuring NetFlow and NetFlow Data Export"
Tasks for configuring NetFlow to capture and export network traffic data	"Configuring NetFlow and NetFlow Data Export"
Tasks for configuring Configuring MPLS Aware NetFlow	Configuring MPLS Aware NetFlow
Tasks for configuring MPLS egress NetFlow accounting	Configuring MPLS Egress NetFlow Accounting and Analysis
Tasks for configuring NetFlow input filters	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow aggregation caches	"Configuring NetFlow Aggregation Caches"
Tasks for configuring NetFlow BGP next hop support	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring NetFlow Layer 2 and Security Monitoring Exports	"NetFlow Layer 2 and Security Monitoring Exports"
Tasks for configuring the SNMP NetFlow MIB	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
Tasks for configuring the NetFlow MIB and Top Talkers feature	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
No new or modified MIBS are supported by this feature, and support for existing MIBs has not been modified by this feature.	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.	http://www.cisco.com/techsupport

Glossary

CEF—Cisco Express Forwarding. A Layer 3 IP switching technology that optimizes network performance and scalability for networks with large and dynamic traffic patterns.

dCEF—distributed Cisco Express Forwarding. A type of CEF switching in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

egress traffic—Traffic leaving the network.

fast switching—Cisco feature in which a route cache is used for expediting packet switching through a router.

ingress traffic—Traffic entering the network.

multicast data—Single packets copied by the network and sent to a specific subset of network addresses. These addresses are specified in the Destination Address field.

NetFlow—A Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

NetFlow Aggregation—A NetFlow feature that lets you summarize NetFlow export data on an IOS router before the data is exported to a NetFlow data collection system such as the NetFlow Collection Engine. This feature lowers bandwidth requirements for NetFlow export data and reduces platform requirements for NetFlow data collection devices.

NetFlow Collection Engine (formerly called NetFlow FlowCollector)—A Cisco application that is used with NetFlow on Cisco routers and Catalyst series switches. The NetFlow Collection Engine collects packets from the router that is running NetFlow and decodes, aggregates, and stores them. You can generate reports on various aggregations that can be set up on the NetFlow Collection Engine.

NetFlow v9—NetFlow export format Version 9. A flexible and extensible means for carrying NetFlow records from a network node to a collector. NetFlow Version 9 has definable record types and is self-describing for easier NetFlow Collection Engine configuration.

RPF—Reverse Path Forwarding. Multicasting technique in which a multicast datagram is forwarded out of all but the receiving interface if the receiving interface is the one used to forward unicast datagrams to the source of the multicast datagram.

ToS byte—type of service byte. Second byte in the IP header that indicates the desired quality of service (QoS) for a particular datagram.

Feature Information for Configuring NetFlow Multicast Accounting

Table 1 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Release 12.2(1) or 12.0(3)S or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 1 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 1 Feature Information for Configuring NetFlow Multicast Accounting

Feature Name	Releases	Feature Configuration Information
NetFlow Multicast Support	12.3(1), 12.2(18)S, 12.2(27)SBC, 12.2(33)SXF, 12.2(33)SRB	The NetFlow Multicast Support feature lets you capture multicast-specific data (both packets and bytes) for multicast flows. For example, you can capture the packet-replication factor for a specific flow as well as for each outgoing stream. This feature provides complete end-to-end usage information about network traffic for a complete multicast traffic billing solution.
		The following sections provide information about this feature:
		• NetFlow Multicast Benefits, page 2
		• Multicast Ingress and Multicast Egress Accounting, page 3
		• NetFlow Multicast Flow Records, page 3
		 Configuring NetFlow Multicast Accounting in Cisco IOS Releases 12.4(12), 12.4(11)T, 12.2(33)SRB, 12.2(33)SXH, 12.2(33)SB, and Newer Releases, page 3
		• Configuring NetFlow Multicast Accounting in Cisco IOS Releases Prior to 12.4(12), 12.4(11)T, 12.2(33)SRB, 12.2(33)SXH, and 12.2(33)SB, page 5
		 Verifying the NetFlow Multicast Accounting Configuration, page 8
		The following commands were introduced by this feature: ip multicast netflow egress, ip multicast netflow ingress, and ip multicast netflow rpf-failure.
NetFlow Multicast Support ¹	12.4(11)T, 12.4(12), 12.(33)SRB, 12.2(33)SB, 12.2(33)SXH	The ip multicast netflow [ingress egress] interface configuration command was replaced by the ip multicast netflow output-counters global configuration command.

^{1.} This was a minor modification to the existing NetFlow Multicast Support feature. Minor feature modifications are not included in Feature Navigator.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco Stadium Vision, Cisco TelePresence, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0807R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Feature Information for Configuring NetFlow Multicast Accounting

Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data

First Published: May 2nd, 2005 Last Updated: February 12th, 2007

NetFlow is a technology that provides highly granular per-flow statistics on traffic in a Cisco router. The NetFlow MIB feature provides MIB objects to allow users to configure NetFlow and to monitor flow cache information, the current NetFlow configuration, and statistics.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all of the features documented in this module. To reach links to specific feature documentation in this module and to see a list of the releases in which each feature is supported, use the "Feature Information for Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data" section on page 24.

Finding Support Information for Platforms and Cisco IOS and Catalyst OS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

- Prerequisites for Configuring SNMP and the NetFlow MIB to Monitor NetFlow Data, page 2
- Restrictions for Configuring SNMP and the NetFlow MIB to Monitor NetFlow Data, page 2
- Information About Configuring SNMP and the NetFlow MIB to Monitor NetFlow Data, page 2
- How to Configure SNMP and use the NetFlow MIB to Monitor NetFlow Data, page 5
- Configuration Examples using SNMP and the NetFlow MIB to Monitor NetFlow Data, page 19
- Additional References, page 20
- Glossary, page 23
- Feature Information for Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data, page 24

Prerequisites for Configuring SNMP and the NetFlow MIB to Monitor NetFlow Data

Before you enable NetFlow you must:

- Configure the router for IP routing
- Ensure that one of the following is enabled on your router, and on the interfaces that you want to configure NetFlow on: Cisco Express Forwarding (CEF), distributed CEF, or fast switching
- Understand the resources required on your router because NetFlow consumes additional memory and CPU resources
- Configure SNMP on the router on which the NetFlow MIB feature is to be used. Refer to the "Configuring the Router to use SNMP" section on page 5 for more information. For more information on configuring an SNMP server, refer to the "Configuring SNMP Support" chapter of the Cisco IOS Configuration Fundamentals and Network Management Configuration Guide.

Restrictions for Configuring SNMP and the NetFlow MIB to Monitor NetFlow Data

Cisco IOS Releases 12.2(14)S, 12.0(22)S, or 12.2(15)T

If your router is running a version of Cisco IOS prior to releases 12.2(14)S, 12.0(22)S, or 12.2(15)T the **ip route-cache flow** command is used to enable NetFlow on an interface.

If your router is running Cisco IOS release 12.2(14)S, 12.0(22)S, 12.2(15)T, or later the **ip flow ingress** command is used to enable NetFlow on an interface.

Information About Configuring SNMP and the NetFlow MIB to Monitor NetFlow Data

To configure SNMP and the NetFlow MIB to monitor NetFlow data, you should understand the following concepts:

- NetFlow MIB Feature Benefits, page 2
- NetFlow Mib Overview, page 3
- Using SNMP and MIBs to Extract NetFlow Information, page 4
- Objects That are Used by the NetFlow MIB, page 4

NetFlow MIB Feature Benefits

NetFlow is a technology that collects traffic flow statistics on routing devices. NetFlow has been used for a variety of applications, including traffic engineering, usage-based billing, and denial of service (DoS) attack monitoring.

The NetFlow MIB feature is useful for obtaining IP flow information from a Cisco router when a NetFlow export operation is not possible. NetFlow exporting does not have to be enabled for the NetFlow MIB feature to be used. The NetFlow MIB feature can be implemented instantaneously at any point in the network to obtain flow information.

With the NetFlow MIB feature, system information that is stored in the flow cache can be accessed in real time by utilizing a MIB implementation based on SNMP. This information is accessed using **get** and **set** commands entered on the network management system (NMS) workstation for which SNMP has been implemented. The NMS workstation is also known as the SNMP manager.

NetFlow Mib Overview

The Netflow MIB provides a simple and easy method to configure NetFlow, NetFlow aggregation caches, and NetFlow Data Export. You use the snmpget and snmpwalk tools to get NetFlow cache information and current NetFlow configuration information. The NetFlow MIB feature enables medium to small size enterprises to take advantage of NetFlow technology over SNMP at a reduced infrastructure cost. The MIB is created to provide Netflow information in these areas:

- Cache information and configuration.
- Export information and configuration.
- Export Statistics.
- Protocol Statistics.
- Version 9 Export Template information.
- Top Flows information.

Terminology Used

Flow

A flow is defined as an unidirectional sequence of packets between a given source and destination endpoints. Network flows are highly granular; flow endpoints are identified both by IP address as well as by transport layer application port numbers. NetFlow also utilizes the IP Protocol type, Type of Service (ToS) and the input interface identifier to uniquely identify flows.

Exporter

A device (for example, a router) with NetFlow services enabled. The exporter monitors packets entering an observation point and creates flows out of these packets. The information from these flows are exported in the form of Flow Records to the collector. You can configure NetFlow data export using the NetFlow MIB.

Flow Record

A Flow Record provides information about an IP Flow that exists on the Exporter. The Flow Records are commonly referred to as NetFlow Services data or NetFlow data.

Collector

The NetFlow Collector receives Flow Records from one or more Exporters. It processes the received export packet, i.e. parses, stores the Flow Record information. The flow records may be optionally aggregated before storing into the hard disk.

Template

NetFlow Version 9 Export format is template based. Version 9 record format consists of a packet header followed by at least one or more template or data FlowSets. A template FlowSet (collection of one or more template) provides a description of the fields that will be present in future data FlowSets. Templates provide an extensible design to the record format, a feature that should allow future enhancements to NetFlow services without requiring concurrent changes to the basic flow-record format.

One additional record type is also a part of Version 9 specification: an options template. Rather than supplying information about IP flows, options are used to supply meta-data about the NetFlow process itself.

Top Flows

This feature provides a mechanism which allows the top N flows in the netflow cache to be viewed in real time.

Criteria can be set to limit the feature to particular flows of interest, which can aid in DoS detection.

Only the number of flows (TopN) and the sort criteria (SortBy) need be set.

Top Flows is not intended as a mechanism for exporting the entire netflow cache.

For more information on the Top Flows and the NetFlow MIB refer to the "Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands" module.

Egress flows

This feature analyzes traffic that is being forwarded by the router. This feature is often referred to as Egress NetFlow.

Using SNMP and MIBs to Extract NetFlow Information

SNMP has historically been used to collect network information. SNMP permits retrieval of critical information from network elements such as routers, switches, and workstations. The NetFlow MIB feature uses SNMP to configure NetFlow and to gather NetFlow statistics.

The NetFlow MIB feature allows NetFlow statistics and other NetFlow data for the managed devices on your system to be retrieved by SNMP. You can specify retrieval of NetFlow information from a managed device (for example, a router) either by entering commands on that managed device or by entering SNMP commands from the NMS workstation to configure the router via the MIB. If the NetFlow information is configured from the NMS workstation, no access to the router is required and all configuration can be performed via SNMP. The NetFlow MIB request for information is sent from an NMS workstation via SNMP to the router and is retrieved from the router. This information can then be stored or viewed, thus allowing NetFlow information to be easily accessed and transported across a multivendor programming environment.

Objects That are Used by the NetFlow MIB

The NetFlow MIB feature defines managed objects that enable a network administrator to remotely monitor the following NetFlow information:

- Flow cache configuration information
- NetFlow export information
- General NetFlow statistics

How to Configure SNMP and use the NetFlow MIB to Monitor NetFlow Data

Some of the tasks in this section include examples of the SNMP CLI syntax used to set configuration parameters on the router, and to read values from MIB objects on the router. These SNMP CLI syntax examples are taken from a Linux workstation using public domain SNMP tools. The SNMP CLI syntax for your workstation might be different. Refer to the documentation that was provided with your SNMP tools for the correct syntax for your network management workstation.

This section contains the following procedures:

- Configuring the Router to use SNMP, page 5 (required)
- Configuring Options for the Main Cache, page 6 (optional)
- Identifying the Interface Number to use for Enabling NetFlow with SNMP, page 9 (required)
- Configuring NetFlow on an Interface, page 10 (required)
- Configuring the Destination-Prefix Aggregation Cache, page 11 (optional)

Configuring the Router to use SNMP

Before the NetFlow MIB feature can be used, the router must be configured support SNMP. To enable SNMP on the router perform the steps in this required task.

The SNMP community read-only (RO) string for the examples is **public**. The SNMP community read-write (RW) string for the examples is **private**. You should use more complex strings for these values in your configurations.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. snmp-server community string1 ro
- 4. snmp-server community string2 rw
- 5. end

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
	<pre>Example: Router> enable</pre>	Enter your password if prompted.
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	snmp-server community string ro	(Required) Sets up the community access string to permit access to SNMP.
	<pre>Example: Router(config) # snmp-server community public ro</pre>	• The <i>string</i> argument is a community string that consists of from 1 to 32 alphanumeric characters and functions much like a password, permitting access to the SNMP protocol. Blank spaces are not permitted in the community string.
		• The ro keyword specifies read-only access. SNMP management stations using this string can retrieve MIB objects.
Step 4	snmp-server community string rw	(Required) Sets up the community access string to permit access to SNMP.
	<pre>Example: Router(config) # snmp-server community private rw</pre>	• The <i>string</i> argument is a community string that consists of from 1 to 32 alphanumeric characters and functions much like a password, permitting access to the SNMP protocol. Blank spaces are not permitted in the community string.
		• The rw keyword specifies read-write access. SNMP management stations using this string can retrieve and modify MIB objects.
		Note The <i>string</i> argument must be different from the read-only <i>string</i> argument specified in the preceding step (Step 3).
Step 5	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config) # end</pre>	

Configuring Options for the Main Cache

This optional task describes the procedure for modifying the parameters for the NetFlow main cache. Perform the steps in this optional task using either the router CLI commands or the SNMP commands to modify the parameters for the NetFlow main cache.

SUMMARY STEPS

Router CLI Commands

- 1. enable
- 2. configure terminal
- 3. ip flow-cache entries number
- 4. ip flow-cache timeout active minutes
- 5. ip flow-cache timeout inactive seconds
- **6.** end

SNMP Commands

- 1. snmpset -c private -m all -v2c [ip-address | hostname] cnfCICacheEntries.type unsigned number
- 2. **snmpset -c** *private* **-m all -v2c** [*ip-address* | *hostname*] **cnfCIActiveTimeOut.type unsigned** *number*
- 3. snmpset -c private -m all -v2c [ip-address | hostname] ccnfCIInactiveTimeOut.type unsigned number

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	ip flow-cache entries number	(Optional) Specifies the maximum number of entries to be captured for the main flow cache.
	<pre>Example: Router(config) # ip flow-cache entries 4000</pre>	Note The valid range for the <i>number</i> argument is from 1024 to 524288 entries.
Step 4	ip flow-cache timeout active minutes	(Optional) Configures operational parameters for the main cache.
	<pre>Example: Router(config) # ip flow-cache timeout active 30</pre>	• The timeout keyword dissolves the session in the cache.
		• The active <i>minutes</i> keyword-argument pair is the number of minutes that an entry is active. The range is from 1 to 60 minutes. The default is 30 minutes.

	Command or Action	Purpose
Step 5	ip flow-cache timeout inactive seconds	(Optional) Configures operational parameters for the main cache.
	<pre>Example: Router(config) # ip flow-cache timeout inactive</pre>	• The timeout keyword dissolves the session in the main cache.
	100	• The inactive <i>seconds</i> keyword-argument pair is the number of seconds that an inactive entry will stay in the main cache before it times out. The range is from 10 to 600 seconds. The default is 15 seconds.
Step 6	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config) # end</pre>	

DETAILED STEPS: SNMP Commands

	Command or Action	Purpose
Step 1	<pre>snmpset -c private -m all -v2c [ip-address hostname] cnfCICacheEntries.type unsigned number</pre>	(Optional) Defines the maximum number of entries to be captured for the main flow cache.
	Example: workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfCICacheEntries.0 unsigned 4000	• The value for the <i>type</i> argument in cnfCICacheEntries . <i>type</i> unsigned <i>number</i> is 0 for the main cache.
		• The value for the <i>number</i> argument in cnfCICacheEntries .type number is the maximum number of cache entries.
		Note The valid range for the <i>number</i> argument is from 1024 to 524288 entries.

snmpset -c private -m all -v2c [ip-address Step 2 hostname] cnfCIActiveTimeOut.type unsigned

number

Example:

workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfCIActiveTimeOut.0 unsigned 60

(Optional) Specifies the number of seconds that an active flow remains in the main cache before it times out.

- The value for the *type* argument in cnfCIActiveTimeout.type unsigned number is 0 for the main cache.
- The value for the *number* argument in cnfCIActiveTimeout.type unsigned number is the number of seconds that an active flow remains in the cache before it times out.

Note The range for the *number* argument is from 1 to 60 minutes. The default is 30 minutes.

Step 3 snmpset -c private -m all -v2c [ip-address hostname] ccnfCIInactiveTimeOut.type unsigned

number

Example:

workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfCIInactiveTimeOut.0 unsigned 30 (Optional) Specifies the number of seconds that an inactive flow remains in the main cache before it times out.

- The value for the *type* argument in cnfCIInactiveTimeout.type unsigned number is 0 for the main cache.
- The value for the *number* argument in **cnfCIInactiveTimeout**.type **unsigned** number is the number of seconds that an inactive flow remains in the main cache before it times out.

Note The range for the *number* argument is from 10 to 600 seconds. The default is 15 seconds.

Identifying the Interface Number to use for Enabling NetFlow with SNMP

Before you can use SNMP to enable NetFlow on an interface you must identify the correct SNMP interface number on the router. To identify the interface number for the interface that you want to enable NetFlow on perform the steps in this required task.

SUMMARY STEPS

- 1. enable
- 2. show snmp mib ifmib ifindex type number

DETAILED STEPS

Step 1

Enters privileged EXEC mode. Enter the password if prompted.

Router> enable

Step 2 show snmp mib ifmib ifindex type number

Displays the SNMP interface number for the interface specified.

Router# show snmp mib ifmib ifindex fastethernet 0/0 Ethernet0/0: Ifindex = 1

Configuring NetFlow on an Interface

Perform the steps in this required task using either the router CLI commands or the SNMP commands to enable NetFlow on the router.

SUMMARY STEPS

Router CLI Commands

- 1. enable
- 2. configure terminal
- **3. interface** *type number*
- 4. ip flow {ingress | egress}
- 5. exit
- **6.** Repeat Steps 3 through 5 to enable NetFlow on other interfaces
- 7. end

SNMP Commands

- 1. snmpset -c private -m all -v2c [ip-address | hostname] cnfCINetflowEnable.interface-number integer [0 | 1 | 2 | 3]
- 2. Repeat Step 1 to enable NetFlow on other interfaces.

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	interface type number	(Required) Specifies the interface that you want to enable NetFlow on and enters interface configuration mode.
	<pre>Example: Router(config) # interface fastethernet0/0</pre>	
Step 4	ip flow {ingress egress}	(Required) Enables NetFlow on the interface.
	<pre>Example: Router(config-if)# ip flow ingress and/or</pre>	 ingress—captures traffic that is being received by the interface egress—captures traffic that is being transmitted by the interface.
	<pre>Example: Router(config-if)# ip flow egress</pre>	

	Command or Action	Purpose
Step 5	exit	(Optional) Exits interface configuration mode and returns to global configuration mode.
	Example: Router(config-if)# exit	Note You only need to use this command if you want to enable NetFlow on another interface.
Step 6	Repeat Steps 3 through 5 to enable NetFlow on other interfaces.	(Optional) —
Step 7	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

DETAILED STEPS: SNMP Commands

	Command or Action	Purpose
Step 1	<pre>snmpset -c private -m all -v2c [ip-address hostname] cnfCINetflowEnable.interface-number integer [0 1 2 3] Example: workstation% snmpset -c private -m all -v2c</pre>	(Required) Configures NetFlow for an interface. Note The value for the <i>interface-number</i> argument is found by entering the router CLI command show snmp mib ifmib ifindex on the router in privileged EXEC mode.
	10.4.9.62 cnfCINetflowEnable.1 integer 1	The values for the <i>direction</i> argument are:
		0—Disable NetFlow
		• 1—Enable Ingress NetFlow
		• 2—Enable Egress NetFlow
		• 3—Enable Ingress and Egress NetFlow
Step 2	Repeat Step 1 to enable NetFlow on other interfaces	(Optional) —

Configuring the Destination-Prefix Aggregation Cache

This task describes the procedure for modifying the parameters for aggregation caches. The **destination-prefix** is used in this task. With the exception of specifying the aggregation cache that you want to modify, the steps are the same for modifying these parameters for the other aggregation caches.

Perform the steps in this optional task using either the router CLI commands or the SNMP commands to modify configuration parameters for an aggregation cache.

Prerequisites

You must enable NetFlow on at least one interface before configuring a NetFlow aggregation cache.

SUMMARY STEPS

Router CLI Commands

1. enable

- 2. configure terminal
- 3. ip flow-aggregation cache destination-prefix
- 4. cache entries number
- 5. cache timeout active minutes
- 6. cache timeout inactive seconds
- 7. enable
- 8. end

SNMP Commands

- 1. snmpset -c private -m all -v2c [ip-address | hostname] cnfCICacheEnable.type integer truth-value
- 2. snmpset -c private -m all -v2c [ip-address | hostname] cnfCICacheEntries.type unsigned number
- 3. snmpset -c private -m all -v2c [ip-address | hostname] cnfCIActiveTimeOut.type unsigned number
- **4. snmpset -c** *private* **-m all -v2c** [*ip-address* | *hostname*] **ccnfCIInactiveTimeOut.***type* **unsigned** *number*

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	ip flow-aggregation cache destination-prefix	(Required) Enters aggregation cache configuration mode for the destination-prefix aggregation cache.
	<pre>Example: Router(config) # ip flow-aggregation cache</pre>	• The destination-prefix keyword is equivalent to the <i>type</i> argument of 4 in Step 2 of the SNMP commands.
	destination-prefix	Note For information on other keywords for this command, see the <i>Cisco IOS NetFlow Command Reference</i> .
Step 4	cache entries number	(Optional) Defines the number of entries that are allowed in the aggregation flow cache.
	Example:	
	Router(config-flow-cache)# cache entries 4000	
Step 5	cache timeout active minutes	(Optional) Specifies the number of minutes that an active flow remains in the cache before it times out.
	<pre>Example: Router(config) # cache timeout active 30</pre>	Note The range is from 1 to 60 minutes. The default is 30 minutes.

	Command or Action	Purpose
Step 6	cache timeout inactive seconds	(Optional) Specifies the number of seconds that an inactive flow remains in the cache before it times out.
	<pre>Example: Router(config-flow-cache)# cache timeout inactive 100</pre>	Note The range is from 10 to 600 seconds. The default is 15 seconds.
Step 7	enable	(Required) Activates the destination-prefix aggregation cache.
	<pre>Example: Router(config-flow-cache)# enable</pre>	
Step 8	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

DETAILED STEPS: SNMP Commands

	Command or Action	Purpose
Step 1	<pre>snmpset -c private -m all -v2c [ip-address hostname] cnfCICacheEnable.type integer truth-value</pre>	(Required) Enables the aggregation cache.
		• Values for the <i>type</i> argument are:
		- Main—0
	Example: workstation% snmpset -c private -m all -v2c 10.4.9.14 cnfCICacheEnable.4 integer 1	- AS—1
		- Protocol Port—2
		- Source Prefix—3
		 Destination Prefix—4
		- prefix—5
		- Destination Only—6
		- Source Destination—7
		- Full Flow—8
		- AS ToS—9
		- Protocol Port ToS—10
		- Source Prefix ToS—11
		- Destination Prefix Tos—12
		- Prefix Tos—13
		- Prefix Port—14
		- BGP Nexthop Tos—15
		• Values for truth-value in cnfCICacheEnable.type integer truth-value are:
		- 1—enable the aggregation cache
		 2—disable the aggregation cache
Step 2	<pre>snmpset -c private -m all -v2c [ip-address hostname] cnfCICacheEntries.type unsigned</pre>	(Optional) Defines the maximum number of entries to be captured for the aggregation flow cache.
	<pre>Example: workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfCICacheEntries.4 unsigned 4000</pre>	• The value for the <i>type</i> argument in cnfCICacheEntries . <i>type</i> unsigned <i>number</i> is 4 for the destination-prefix cache.
		• The value for the <i>number</i> argument in cnfCICacheEntries .type unsigned number is the maximum number of cache entries.
		Note The valid range for the <i>number</i> argument is from 1024 to 524288 entries.

	Command or Action	Purpose
Step 3	<pre>snmpset -c private -m all -v2c [ip-address hostname] cnfClActiveTimeOut.type unsigned number</pre>	(Optional) Specifies the number of seconds that an active flow remains in the cache before it times out.
	Example: workstation% snmpset -c private -m all -v2c 10.4.9.14 cnfCIActiveTimeOut.4 unsigned 60	 The value for the type argument in cnfCIActiveTimeout.type unsigned number is 4 for the destination-prefix cache. The value for the number argument in cnfCIActiveTimeout.type unsigned number is the number of seconds that an active flow remains in the
		Note The range for the <i>number</i> argument is from 1 to 60 minutes. The default is 30 minutes.
Step 4	<pre>snmpset -c private -m all -v2c [ip-address hostname] ccnfCIInactiveTimeOut.type unsigned number</pre>	(Optional) Specifies the number of seconds that an inactive flow remains in the cache before it times out.
	Example: workstation% snmpset -c private -m all -v2c 10.4.9.14 cnfCIInactiveTimeOut.4 unsigned 30	• The value for the <i>type</i> argument in cnfCIInactiveTimeout . <i>type</i> unsigned <i>number</i> is 4 for the destination-prefix cache.
		• The value for the <i>number</i> argument in cnfCIInactiveTimeout .type unsigned number is the number of seconds that an inactive flow remains in the cache before it times out.
		Note The range for the <i>number</i> argument is from 10 to 600 seconds. The default is 15 seconds.

Configuring NetFlow Export from the Main NetFlow Cache using the Version 9 Export Format

The following example configures the router to export statistics from the NetFlow main cache (0), including peer autonomous system and BGP-related information using export Version 9.

Perform the steps in this optional task using either the router CLI commands or the SNMP commands to configure the router to export statistics from the main cache using the Version 9.

SUMMARY STEPS

Router CLI Commands

- 1. enable
- 2. configure terminal
- 3. ip flow-export version 9 [origin-as | peer-as] [bgp-nexthop]
- 4. ip flow-export {destination {ip-address | hostname} udp-port}
- **5**. Repeat Step 4 to add a second NetFlow collector
- 6. end

SNMP Commands

- 1. snmpset -c private -m all -v2c [ip-address | hostname] cnfEIExportVersion.type unsigned version cnfEIPeerAS.type integer version cnfEIBgpNextHop.type integer truth-value
- 2. snmpset -c private -m all -v2c [ip-address | hostname] cnfEICollectorStatus.type.address-type.ip-version.ip-address.port integer [4 | 6]
- 3. Repeat Step 2 to add a second NetFlow collector

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
	<pre>Example: Router> enable</pre>	Enter your password if prompted.
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>ip flow-export version 9 [origin-as peer-as] [bgp-nexthop]</pre>	(Required) Enables the export of information in NetFlow cache entries.
	<pre>Example: Router(config) # ip flow-export version 9 peer-as bgp-nexthop</pre>	• The version 9 keyword specifies that the export packet uses the Version 9 format.
		• The origin-as keyword specifies that export statistics include the originating AS for the source and destination.
		• The peer-as keyword specifies that export statistics include the peer AS for the source and destination.
		• The bgp-nexthop keyword specifies that export statistics include BGP next hop-related information.
		\wedge
		Entering this command on a Cisco 12000 Series Internet Router causes packet forwarding to stop for a few seconds while NetFlow reloads the route processor and line card CEF tables. To avoid interruption of service to a live network, apply this command during a change window, or include it in the startup-config file to be executed during a router reboot.
Step 4	<pre>ip flow-export destination {ip-address hostname} udp-port}</pre>	(Required) Specifies the IP address, or hostname of the NetFlow collector, and the UDP port the NetFlow collector is listening on.
	Example: Router(config) # ip flow-export destination 10.0.19.2 999	

	Command or Action	Purpose
Step 5	Repeat Step 4 to add a second NetFlow collector	(Optional) —
Step 6		(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config)# end</pre>	

DETAILED STEPS: SNMP Commands

Command or Action	Purpose
<pre>snmpset -c private -m all -v2c [ip-address hostname] cnfEIExportVersion.type unsigned version cnfEIPeerAS.type integer truth-value cnfEIBgpNextHop.type integer truth-value</pre>	(Required) Specifies the export format and that the expor statistics include peer autonomous system and BGP-relate information.
22	• The values for the <i>type</i> argument are:
Example: workstation% snmpset -c private -m all -v2c 10.4.9.14 cnfEIExportVersion.0 unsigned 9 cnfEIPeerAS.0 integer 1 cnfEIBgpNextHop.0 integer 1	- Main—0
	- AS—1
	- Protocol Port—2
	- Source Prefix—3
	 Destination Prefix—4
	- prefix—5
	- Destination Only—6
	- Source Destination—7
	- Full Flow—8
	- AS ToS—9
	 Protocol Port ToS—10
	- Source Prefix ToS—11
	 Destination Prefix Tos—12
	- Prefix Tos—13
	- Prefix Port—14
	- BGP Nexthop Tos—15
	• The values for the <i>version</i> argument are:
	 5—Version 5 export format. The number of records stored in the datagram is a variable between 1 are 30 for the Version 5 export format.
	- 9—Version 9 export format.
	• The values for the <i>truth-value</i> argument are:
	- 1—enable the keyword
	- 2—disable the keyword

Step 2

snmpset -c private -m all -v2c [ip-address |
hostname]

cnfEICollectorStatus.type.address-type.ip-versi
on.ip-address.port integer [4 | 6]

Example:

workstation% snmpset -c private -m all -v2c 10.4.9.14 cnfEICollectorStatus.0.1.4.10.0.19.2.3 integer

(Required) Enables the exporting of information in NetFlow cache entries.

- Values the *type* argument are:
 - Main—0
 - AS-1
 - Protocol Port—2
 - Source Prefix—3
 - Destination Prefix—4
 - prefix—5
 - Destination Only—6
 - Source Destination—7
 - Full Flow—8
 - AS ToS—9
 - Protocol Port ToS—10
 - Source Prefix ToS—11
 - Destination Prefix Tos—12
 - Prefix Tos—13
 - Prefix Port—14
 - BGP Nexthop Tos—15
- The *address-type*, and *ip-version* arguments specify the type of IP address.
 - The *address-type* argument is 1.
 - The *ip-version* argument is the length in bytes of the address. Currently IPv4 is the only type that is supported, so the ip-version value should be 4 (four bytes in an IPv4 IP address).
- The *ip-address* variable specifies the IPv4 IP address of the collector.
- The *port* argument is the UDP port the collector is listening on for NetFlow data.
- The [4 | 6] keywords create and remove the NetFlow collector.
 - The 4 keyword creates the collector in the router's configuration, and activates the collector.
 - The 6 keyword removes the collector from router's configuration.

Step 3

Repeat Step 2 to add another collector

(Optional) —

Configuration Examples using SNMP and the NetFlow MIB to Monitor NetFlow Data

This section provides the following configuration examples:

- Configuring the Minimum Mask for a Source Prefix Aggregation Scheme using SNMP: Example, page 19
- Configuring NetFlow Data Export for the Source Prefix Aggregation Scheme using SNMP: Example, page 19
- Configuring a NetFlow Minimum Mask for a Prefix Aggregation Cache using SNMP: Example, page 19
- Using SNMP to Gather Flow Information From the Router: Example, page 20

Configuring the Minimum Mask for a Source Prefix Aggregation Scheme using SNMP: Example

The following example enables a **Source-Prefix** aggregation cache and sets the source prefix mask to 16 bits.

```
workstation% snmpset -c private -m all -v2c 10.4.9.14 cnfCICacheEnable.3 integer 1
CISCO-NETFLOW-MIB::cnfCICacheEnable.sourcePrefix = INTEGER: true(1)
workstation% snmpset -c private -m all -v2c 10.4.9.14 cnfCIMinSourceMask.3 unsigned 16
CISCO-NETFLOW-MIB::cnfCIMinSourceMask.sourcePrefix = Gauge32: 16
```

Configuring NetFlow Data Export for the Source Prefix Aggregation Scheme using SNMP: Example

The following example enables a **Source-Prefix** aggregation cache and configures NetFlow Data Export for the aggregation cache.

```
workstation% snmpset -c private -m all -v2c 10.4.9.14 cnfCICacheEnable.3 integer 1
CISCO-NETFLOW-MIB::cnfCICacheEnable.sourcePrefix = INTEGER: true(1)
workstation% snmpset -c private -m all -v2c 10.4.9.14
cnfEICollectorStatus.3.1.4.10.0.19.2.3 integer 4
CISCO-NETFLOW-MIB::cnfEICollectorStatus.sourcePrefix.ipv4."...".3 = INTEGER:
createAndGo(4)
```

Configuring a NetFlow Minimum Mask for a Prefix Aggregation Cache using SNMP: Example

The following example enables a **Prefix** aggregation cache and sets the prefix mask to 16 bits. workstation% snmpset -c private -m all -v2c 10.4.9.14 cnfClCacheEnable.5 integer 1

```
CISCO-NETFLOW-MIB::cnfCICacheEnable.prefix = INTEGER: true(1)
workstation% snmpset -c private -m all -v2c 10.4.9.14 cnfCIMinSourceMask.5 unsigned 16
CISCO-NETFLOW-MIB::cnfCIMinSourceMask.prefix = Gauge32: 16
```

Using SNMP to Gather Flow Information From the Router: Example

The following examples show how to retrieve NetFlow status and statistics using SNMP.

- Retrieving Netflow Statistics using SNMP
- View the NetFlow Main Cache Timeout Values using SNMP

Retrieving Netflow Statistics using SNMP

This command will retrieve the Netflow Statistics from the main cache using the MIB.

The IP packet size distribution values are in the same order as shown in the CLI, with each pair of bytes representing a value of 1000 times the respective value in the CLI.

For example, for the packet range 65-96, the byte pair is 0x03e8 which is 1000 times 1. So to obtain the same values as the CLI, divide the value by 1000.

View the NetFlow Main Cache Timeout Values using SNMP

This command will retrieve the cache timeout values from the main cache using the MIB.

workstation% snmpget -c public -v2c 10.4.9.14 cnfCIActiveFlows.0 cnfCIInactiveFlows.0 cnfCIInactiveTimeOut.0

```
CISCO-NETFLOW-MIB::cnfCIActiveFlows.main = Gauge32: 1
CISCO-NETFLOW-MIB::cnfCIInactiveFlows.main = Gauge32: 3999
CISCO-NETFLOW-MIB::cnfCIActiveTimeOut.main = Gauge32: 60 minutes
CISCO-NETFLOW-MIB::cnfCIInactiveTimeOut.main = Gauge32: 30 seconds
```

Additional References

The following sections provide references related to configuring SNMP and the NetFlow MIB to monitor NetFlow data.

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
The minimum information about and tasks required for configuring NetFlow and NetFlow Data Export	"Getting Started with Configuring NetFlow and NetFlow Data Export"
Tasks for configuring NetFlow to capture and export network traffic data	"Configuring NetFlow and NetFlow Data Export"
Tasks for configuring Configuring MPLS Aware NetFlow	Configuring MPLS Aware NetFlow
Tasks for configuring MPLS egress NetFlow accounting	Configuring MPLS Egress NetFlow Accounting and Analysis
Tasks for configuring NetFlow input filters	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow aggregation caches	"Configuring NetFlow Aggregation Caches"
Tasks for configuring NetFlow BGP next hop support	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
Tasks for configuring NetFlow multicast support	"Configuring NetFlow Multicast Accounting"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring NetFlow Layer 2 and Security Monitoring Exports	"NetFlow Layer 2 and Security Monitoring Exports"
Tasks for configuring the NetFlow MIB and Top Talkers feature	"Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
CISCO-NETFLOW-MIB.my	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL (requires CCO login account): http://www.cisco.com/go/mibs

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content,	http://www.cisco.com/techsupport
including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users	
can log in from this page to access even more content.	

Glossary

AS—autonomous system. A collection of networks under a common administration sharing a common routing strategy. Autonomous systems are subdivided by areas. An autonomous system must be assigned a unique 16-bit number by the Internet Assigned Numbers Authority (IANA).

BGP—Border Gateway Protocol. Interdomain routing protocol that replaces Exterior Gateway Protocol (EGP). A BGP system exchanges reachability information with other BGP systems. BGP is defined by RFC 1163.

BGP next hop—IP address of the next hop to be used to reach a specific destination.

CEF—Cisco Express Forwarding. A Layer 3 IP switching technology that optimizes network performance and scalability for networks with large and dynamic traffic patterns.

dCEF—distributed Cisco Express Forwarding. A type of CEF switching in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

MIB—Management Information Base. Database of network management information that is used and maintained by a network management protocol, such as Simple Network Management System (SNMP) or the Common Management Information Protocol (CMIP). The value of a MIB object can be changed or retrieved using SNMP or CMIP commands, usually through a GUI network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

NetFlow—A Cisco IOS application that provides statistics on packets flowing through the router. It is emerging as a primary network accounting and security technology.

NetFlow Aggregation—A NetFlow feature that lets you summarize NetFlow export data on an IOS router before the data is exported to a NetFlow data collection system such as the NetFlow Collection Engine. This feature lowers bandwidth requirements for NetFlow export data and reduces platform requirements for NetFlow data collection devices.

NetFlow Collection Engine (formerly NetFlow FlowCollector)—A Cisco application that is used with NetFlow on Cisco routers and Catalyst series switches. The NetFlow Collection Engine collects packets from the router that is running NetFlow and decodes, aggregates, and stores them. You can generate reports on various aggregations that can be set up on the NetFlow Collection Engine.

NetFlow v9—NetFlow export format Version 9. A flexible and extensible means for carrying NetFlow records from a network node to a collector. NetFlow Version 9 has definable record types and is self-describing for easier NetFlow Collection Engine configuration.

NMS—network management system. A system responsible for managing at least part of a network. An NMS is generally a reasonably powerful and well-equipped computer, such as an engineering workstation. NMSs communicate with agents to help keep track of network statistics and resources.

SNMP—Simple Network Management Protocol. A network management protocol used almost exclusively in TCP/IP networks. SNMP provides a means to monitor and control network devices, and to manage configurations, statistics collection, performance, and security.

SNMP communities—An authentication scheme that enables an intelligent network device to validate SNMP requests.

ToS byte—type of service. Second byte in the IP header that indicates the desired quality of service for a particular datagram.

Feature Information for Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data

Table 1 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Releases 12.2(1) or 12.0(3)S or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 1 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 1 Feature Information for Configuring the NetFlow Top Talkers Feature using the Cisco IOS CLI or SNMP Commands

Feature Name	Releases	Feature Configuration Information
NetFlow MIB	12.3(7)T, 12.2(25)S 12.2(27)SBC	The NetFlow MIB feature provides MIB objects to allow users to monitor NetFlow cache information, the current NetFlow configuration, and statistics.
		The following sections provide information about this feature:
		• Information About Configuring SNMP and the NetFlow MIB to Monitor NetFlow Data, page 2
		• How to Configure SNMP and use the NetFlow MIB to Monitor NetFlow Data, page 5
		The following command was introduced by this feature: ip flow-cache timeout .

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0804R)

Feature Information for Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Feature Information for Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data

Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands

First Published: May 2nd, 2005 Last Updated: August 9, 2007

This module contains information about and instructions for configuring NetFlow Top Talkers feature. The NetFlow Top Talkers feature can be configured using the Cisco IOS command-line interface (CLI) or with SNMP commands using the NetFlow MIB. The NetFlow Top Talkers feature uses NetFlow functionality to obtain information regarding heaviest traffic patterns and most-used applications in the network. The NetFlow MIB allows you to configure NetFlow and the NetFlow Top Talkers feature using SNMP commands from a network management workstation.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all of the features documented in this module. To reach links to specific feature documentation in this module and to see a list of the releases in which each feature is supported, use the "Feature Information for Configuring NetFlow Top Talkers using the Cisco IOS CLI or SNMP Commands" section on page 26.

Finding Support Information for Platforms and Cisco IOS and Catalyst OS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

If you are searching in Feature Navigator, the feature documented in this module is named NetFlow MIB and Top Talkers.

Contents

- Prerequisites for Configuring NetFlow Top Talkers, page 2
- Restrictions for Configuring NetFlow Top Talkers, page 2
- Information About Configuring NetFlow Top Talkers, page 2

- How to Configure NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands, page 4
- Configuration Examples for NetFlow Top Talkers, page 23
- Additional References, page 24
- Feature Information for Configuring NetFlow Top Talkers using the Cisco IOS CLI or SNMP Commands, page 26

Prerequisites for Configuring NetFlow Top Talkers

Before you enable NetFlow and NetFlow Top Talkers, you must:

- Configure the router for IP routing
- Ensure that one of the following is enabled on your router, and on the interfaces that you want to configure NetFlow on: Cisco Express Forwarding (CEF), distributed CEF, or fast switching
- Understand the resources required on your router because NetFlow consumes additional memory and CPU resources.

Restrictions for Configuring NetFlow Top Talkers

Cisco IOS Releases 12.2(14)S, 12.0(22)S, or 12.2(15)T

If your router is running a version of Cisco IOS prior to releases 12.2(14)S, 12.0(22)S, or 12.2(15)T the **ip route-cache flow** command is used to enable NetFlow on an interface.

If your router is running Cisco IOS release 12.2(14)S, 12.0(22)S, 12.2(15)T, or later the **ip flow ingress** command is used to enable NetFlow on an interface.

Cisco IOS Release 12.2(33)SXH

Some of the keywords and arguments for the commands used to configure the NetFlow MIB and Top Talkers feature are not supported in 112.2(33)SXH. See the syntax descriptions for the commands in the command reference (URL for the 12.2SX NF CR to be added later) for details.

Information About Configuring NetFlow Top Talkers

To configure the NetFlow MIB and Top Talkers feature, you should understand the following concepts:

- Overview of the NetFlow MIB and Top Talkers Feature, page 2
- Benefits of the NetFlow MIB and Top Talkers Feature, page 3
- Cisco IOS Release 12.2(33)SXH on Cisco 6500 Series Switches, page 3

Overview of the NetFlow MIB and Top Talkers Feature

NetFlow collects traffic flow statistics on routing devices. NetFlow has been used for a variety of applications, including traffic engineering, usage-based billing, and monitoring for denial-of-service (DoS) attacks.

The flows that are generating the heaviest system traffic are known as the "top talkers."

The NetFlow Top Talkers feature allows flows to be sorted so that they can be viewed. The top talkers can be sorted by either of the following criteria:

- By the total number of packets in each top talker
- By the total number of bytes in each top talker

The usual implementation of NetFlow exports NetFlow data to a collector. The NetFlow MIB and Top Talkers feature performs security monitoring and accounting for top talkers and matches and identifyies key users of the network. This feature is also useful for a network location where a traditional NetFlow export operation is not possible. The NetFlow MIB and Top Talkers feature does not require a collector to obtain information regarding flows. Instead, these flows are placed in a special cache where they can be viewed. The NetFlow MIB part of the NetFlow MIB and Top Talkers feature allows you to configure the NetFlow Top Talkers feature using SNMP.

In addition to sorting top talkers, you can further organize your output by specifying criteria that the top talkers must match, such as source or destination IP address or port. The **match** command is used to specify this criterion. For a full list of the matching criteria that you can select, refer to the **match** command in the Cisco IOS command reference documentation.

Benefits of the NetFlow MIB and Top Talkers Feature

Top talkers can be useful for analyzing network traffic in any of the following ways:

- Security—You can view the list of top talkers to see if traffic patterns consistent with DoS attack are present in your network.
- Load balancing—You can identify the most heavily used parts of the system and move network traffic over to less-used parts of the system.
- Traffic analysis—Consulting the data retrieved from the NetFlow MIB and Top Talkers feature can
 assist you in general traffic study and planning for your network.

An additional benefit of the NetFlow MIB and Top Talkers feature is that it can be configured for a router either by entering CLI commands or by entering SNMP commands on a network management system (NMS) workstation. The SNMP commands are sent to the router and processed by a MIB. You do not have to be connected to the router console to extract the list of top talkers information if an NMS workstation is configured to communicate using SNMP to your network device. For more information on configuring your network device to use MIB functionality for the NetFlow MIB and Top Talkers feature, see the "Configuring SNMP Support on the Networking Device" section on page 4.

Cisco IOS Release 12.2(33)SXH on Cisco 6500 Series Switches

The **show ip flow top-talkers** command was modified in Cisco IOS Release 12.2(33)SXH for the Cisco 6500 Series switches to support displaying the top talkers for a specific module. The **show ip flow top-talkers module** *number* command displays the top talkers for that module. The **show ip flow top-talkers** command without the module keyword shows the top talkers in the hardware switched path (a merged list of top lists from all modules) and then software switched top talkers. The NetFlow MIB can be used to request the top talker list and to set and/or get the configuration parameters for the NetFlow MIB Top Talkers feature.

How to Configure NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands

Some of the tasks in this section include examples of the SNMP CLI syntax used to set configuration parameters on the router and to read values from MIB objects on the router. These SNMP CLI syntax examples are taken from a Linux workstation using public-domain SNMP tools. The SNMP CLI syntax for your workstation might be different. Refer to the documentation that was provided with your SNMP tools for the correct syntax for your network management workstation.

This section contains the following subsections:

- Configuring SNMP Support on the Networking Device, page 4
- Configuring Parameters for the NetFlow Main Cache, page 6
- Identifying the Interface Number to Use for Enabling NetFlow with SNMP, page 8
- Configuring NetFlow on a Cisco 6500 Series Switch, page 9
- Configuring NetFlow on Cisco Routers, page 11
- Configuring NetFlow Top Talkers, page 13
- Configuring NetFlow Top Talkers Match Criteria, page 16
- Verifying the NetFlow Top Talkers Configuration, page 21

Configuring SNMP Support on the Networking Device

If you want to configure the NetFlow Top Talkers feature using the Cisco IOS CLI, you do not have to perform this task.

If you want to configure the NetFlow Top Talkers feature using the NetFlow MIB and SNMP, you must perform this task.

Before you can use SNMP commands to configure the Top Talkers feature you must configure SNMP support on your networking device. To enable SNMP support on the networking device perform the steps in this task.

The SNMP community read-only (RO) string for the examples is **public**. The SNMP community read-write (RW) string for the examples is **private**. You should use more complex strings for these values in your configurations.

For more information on configuring SNMP support on your networking device, refer to the "Configuring SNMP Support" chapter of the *Cisco IOS Configuration Fundamentals and Network Management Configuration Guide*.

SUMMARY STEPS

- 1. enable
- 2. configure terminal

- 3. snmp-server community string ro
- 4. snmp-server community string rw
- 5. end

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
	<pre>Example: Router> enable</pre>	Enter your password if prompted.
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	snmp-server community string ro	(Required) Sets up the community access string to permit access to SNMP.
	<pre>Example: Router(config)# snmp-server community public ro</pre>	• The <i>string</i> argument is a community string that consists of from 1 to 32 alphanumeric characters and functions much like a password, permitting access to the SNMP protocol. Blank spaces are not permitted in the community string.
		• The ro keyword specifies read-only access. SNMP management stations using this string can retrieve MIB objects.
Step 4	snmp-server community string rw	(Required) Sets up the community access string to permit access to SNMP.
	<pre>Example: Router(config)# snmp-server community private rw</pre>	• The <i>string</i> argument is a community string that consists of from 1 to 32 alphanumeric characters and functions much like a password, permitting access to the SNMP protocol. Blank spaces are not permitted in the community string.
		• The rw keyword specifies read-write access. SNMP management stations using this string can retrieve and modify MIB objects.
		Note The <i>string</i> argument must be different from the read-only <i>string</i> argument specified in the preceding step (Step 3).
Step 5	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config)# end</pre>	

Configuring Parameters for the NetFlow Main Cache

This optional task describes the procedure for modifying the parameters for the NetFlow main cache. Perform the steps in this optional task using either the router CLI commands or the SNMP commands to modify the parameters for the NetFlow main cache.

SUMMARY STEPS

Router CLI Commands

- 1. enable
- 2. configure terminal
- 3. ip flow-cache entries number
- 4. ip flow-cache timeout active minutes
- 5. ip flow-cache timeout inactive seconds
- **6.** end

SNMP Commands

- 1. snmpset -c private -m all -v2c [ip-address | hostname] cnfCICacheEntries.type unsigned number
- 2. snmpset -c private -m all -v2c [ip-address | hostname] cnfCIActiveTimeOut.type unsigned number
- 3. snmpset -c private -m all -v2c [ip-address | hostname] ccnfCIInactiveTimeOut.type unsigned number

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	ip flow-cache entries number	(Optional) Specifies the maximum number of entries to be captured for the main flow cache.
	<pre>Example: Router(config) # ip flow-cache entries 4000</pre>	• The range for the <i>number</i> argument is from 1024 to 524288 entries.

	Command or Action	Purpose
Step 4	ip flow-cache timeout active minutes	(Optional) Configures operational parameters for the main cache.
	<pre>Example: Router(config)# ip flow-cache timeout active 30</pre>	• The timeout keyword dissolves the session in the cache.
		• The active <i>minutes</i> keyword-argument pair is the number of minutes that an entry is active. The range is from 1 to 60 minutes. The default is 30 minutes.
Step 5	ip flow-cache timeout inactive seconds	(Optional) Configures operational parameters for the main cache.
	<pre>Example: Router(config) # ip flow-cache timeout inactive</pre>	• The timeout keyword dissolves the session in the main cache.
	100	• The inactive <i>seconds</i> keyword-argument pair is the number of seconds that an inactive entry will stay in the main cache before it times out. The range is from 10 to 600 seconds. The default is 15 seconds.
Step 6	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config)# end</pre>	

DETAILED STEPS: SNMP Commands

	Command or Action	Purpose
Step 1	<pre>snmpset -c private -m all -v2c [ip-address hostname] cnfCICacheEntries.type unsigned number</pre>	(Optional) Defines the maximum number of entries to be captured for the main flow cache.
	Example: workstation% snmpset -c private -m all -v2c	• The value for the <i>type</i> argument in cnfCICacheEntries . <i>type</i> unsigned <i>number</i> is 0 for the main cache.
	10.4.9.62 cnfCICacheEntries.0 unsigned 4000	• The value for the <i>number</i> argument in cnfCICacheEntries .type number is the maximum number of cache entries.
		• The range for the <i>number</i> argument is from 1024 to 524288 entries.

Step 2 snmpset -c private -m all -v2c [ip-address hostname] cnfCIActiveTimeOut.type unsigned

number

Example:

workstation% snmpset -c private -m all -v2c
10.4.9.62 cnfCIActiveTimeOut.0 unsigned 60

(Optional) Specifies the number of seconds that an active flow remains in the main cache before it times out.

- The value for the *type* argument in **cnfCIActiveTimeout**.*type* **unsigned** *number* is 0 for the main cache.
- The value for the number argument in cnfCIActiveTimeout.type unsigned number is the number of seconds that an active flow remains in the cache before it times out.
- The range for the *number* argument is from 1 to 60 minutes. The default is 30 minutes.

Step 3 snmpset -c private -m all -v2c [ip-address | hostname] ccnfCIInactiveTimeOut.type unsigned number

Example:

workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfCIInactiveTimeOut.0 unsigned 30

(Optional) Specifies the number of seconds that an inactive flow remains in the main cache before it times out.

- The value for the *type* argument in **cnfCIInactiveTimeout**. *type* **unsigned** *number* is 0 for the main cache.
- The value for the *number* argument in **cnfCIInactiveTimeout**.type **unsigned** number is the number of seconds that an inactive flow remains in the main cache before it times out.
- The range for the *number* argument is from 10 to 600 seconds. The default is 15 seconds.

Identifying the Interface Number to Use for Enabling NetFlow with SNMP

If you want to configure the NetFlow Top Talkers feature using the Cisco IOS CLI, you do not have to perform this task.

If you want to configure the NetFlow Top Talkers feature using the NetFlow MIB and SNMP, you must perform this task.

Before you can use SNMP to enable NetFlow on an interface, you must identify the SNMP interface number on the router. To identify the interface number for the interface on which you want to enable NetFlow, perform the steps in this required task.

SUMMARY STEPS

- 1. enable
- 2. show snmp mib ifmib ifindex type number
- **3.** Repeat Step 2 to identify the SNMP interface number for any other interfaces on which you plan to enable NetFlow.

DETAILED STEPS

Step 1 enable

Enters privileged EXEC mode. Enter the password if prompted.

Router> enable

Step 2 show snmp mib ifmib ifindex type number

Displays the SNMP interface number for the interface specified.

Router# show snmp mib ifmib ifindex GigabitEthernet6/2
Ethernet0/0: Ifindex = 60

Step 3 Repeat Step 2 to identify the SNMP interface number for any other interfaces on which you plan to enable NetFlow.

Configuring NetFlow on a Cisco 6500 Series Switch

To enable NetFlow on the switch, perform the steps in this required task using either the CLI commands or the SNMP commands.

This task provides the minimum information required to configure NetFlow on your Cisco 6500 series switch. See the Catalyst 6500 Series Cisco IOS Software Configuration Guide, for more information of configuring NetFlow on your switch.

SUMMARY STEPS

Router CLI Commands

- 1. enable
- 2. configure terminal
- 3. mls flow {ip | ipv6} {destination | destination-source | full | interface-destination-source | interface-full | source}
- 4. interface type number
- 5. ip flow {ingress | egress}
- 6. exit
- 7. Repeat Steps 4 through 6 to enable NetFlow on other interfaces.
- 8. end

SNMP Commands

- 1. snmpset -c private -m all -v2c [ip-address | hostname] cseFlowIPFlowMask integer [1 | 2 | 3 | 4 | 5 | 6]
- 2. snmpset -c private -m all -v2c [ip-address | hostname] cnfCINetflowEnable.interface-number integer [0 | 1 | 2 | 3]
- **3.** Repeat Step 2 to enable NetFlow on other interfaces.

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
	<pre>Example: Router> enable</pre>	• Enter your password if prompted.
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>mls flow {ip ipv6} {destination destination-source full interface-destination-source interface-full source}</pre>	Specifies the NetFlow flow mask for IPv4 traffic.
	<pre>Example: Router(config) # mls flow ip interface-full</pre>	
Step 4	interface type number	(Required) Specifies the interface on which you want to enable NetFlow and enters interface configuration mode.
	<pre>Example: Router(config)# interface GigabitEthernet6/2</pre>	
Step 5	<pre>ip flow {ingress egress}</pre>	(Required) Enables NetFlow on the interface.
	<pre>Example: Router(config-if)# ip flow ingress and/or</pre>	 ingress—Captures traffic that is being received by the interface egress—Captures traffic that is being transmitted by the interface.
	<pre>Example: Router(config-if)# ip flow egress</pre>	
Step 6	exit	(Optional) Exits interface configuration mode and returns to global configuration mode.
	Example: Router(config-if)# exit	• Use this command only if you want to enable NetFlow on another interface.
Step 7	Repeat Steps 4 through 6 to enable NetFlow on other interfaces.	(Optional) —
Step 8	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

DETAILED STEPS: SNMP Commands

	Command or Action	Purpose
Step 1	snmpset -c private -m all -v2c [ip-address	Specifies the NetFlow flow mask for IPv4 traffic.
	hostname] cseFlowIPFlowMask integer [1 2 3 4 5 6]	• 1—destination-only
		• 2—source-destination
	Example:	• 3—full-flow
	workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfCINetflowEnable.60 integer 1	• 4—source-only
		• 5—interface-source-destination
		6—interface-full
Step 2	snmpset -c private -m all -v2c [ip-address	(Required) Configures NetFlow for an interface.
	hostname] cnfCINetflowEnable.interface-number integer [0 1 2 3]	• The value for the <i>interface-number</i> argument is found by entering the router CLI command show snmp mib ifmib ifindex on the router in privileged EXEC mode.
	Example: workstation% snmpset -c private -m all -v2c	• The values for the <i>direction</i> argument are:
	10.4.9.62 cnfCINetflowEnable.60 integer 1	- 0—Disable NetFlow
		- 1—Enable Ingress NetFlow
		- 2—Enable Egress NetFlow
		- 3—Enable Ingress and Egress NetFlow
Step 3	Repeat Step 2 to enable NetFlow on other interfaces	(Optional) —

Configuring NetFlow on Cisco Routers

To enable NetFlow on the router, perform the steps in this required task using either the CLI commands or the SNMP commands .

SUMMARY STEPS

Router CLI Commands

- 1. enable
- 2. configure terminal
- **3**. **interface** *type number*
- 4. ip flow {ingress | egress}
- 5. exit
- **6.** Repeat Steps 3 through 5 to enable NetFlow on other interfaces.
- 7. end

SNMP Commands

- 1. snmpset -c private -m all -v2c [ip-address | hostname] cnfCINetflowEnable.interface-number integer [0 | 1 | 2 | 3]
- 2. Repeat Step 1 to enable NetFlow on other interfaces.

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
Step 2	Router> enable configure terminal	(Required) Enters global configuration mode.
otep 2	Configure Cerminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	interface type number	(Required) Specifies the interface on which you want to enable NetFlow and enters interface configuration mode.
	<pre>Example: Router(config) # interface GigabitEthernet6/2</pre>	
Step 4	<pre>ip flow {ingress egress}</pre>	(Required) Enables NetFlow on the interface.
	<pre>Example: Router(config-if)# ip flow ingress and/or</pre>	 ingress—Captures traffic that is being received by the interface egress—Captures traffic that is being transmitted by the interface.
	<pre>Example: Router(config-if)# ip flow egress</pre>	
Step 5	exit	(Optional) Exits interface configuration mode and returns to global configuration mode.
	Example: Router(config-if)# exit	• Use this command only if you want to enable NetFlow on another interface.
Step 6	Repeat Steps 3 through 5 to enable NetFlow on other interfaces.	(Optional) —
Step 7	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.
	<pre>Example: Router(config-if)# end</pre>	

DETAILED STEPS: SNMP Commands

	Command or Action	Purpose
Step 1	<pre>snmpset -c private -m all -v2c [ip-address hostname] cnfCINetflowEnable.interface-number integer [0 1 2 3]</pre> Example: workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfCINetflowEnable.60 integer 1	 (Required) Configures NetFlow for an interface. The value for the <i>interface-number</i> argument is found by entering the router CLI command show snmp mib ifmib ifindex on the router in privileged EXEC mode. The values for the <i>direction</i> argument are: 0—Disable NetFlow 1—Enable Ingress NetFlow 2—Enable Egress NetFlow 3—Enable Ingress and Egress NetFlow
Step 2	Repeat Step 1 to enable NetFlow on other interfaces	(Optional) —

Configuring NetFlow Top Talkers

This task describes the procedure for configuring the NetFlow Top Talkers feature. Perform the steps in this required task using either the router CLI commands or the SNMP commands to configure the NetFlow Top Talkers feature on the router.

SUMMARY STEPS

Router CLI Commands

- 1. enable
- 2. configure terminal
- 3. ip flow-top-talkers
- 4. top number
- 5. sort by [bytes | packets]
- 6. cache-timeout milliseconds
- 7. end

SNMP Commands

- 1. snmpset -c private -m all -v2c [ip-address | hostname] cnfTopFlowsTopN.0 unsigned number
- 2. snmpset -c private -m all -v2c [ip-address | hostname] cnfTopFlowsSortBy.0 integer [1 | 2 | 3]
- 3. snmpset -c private -m all -v2c [ip-address | hostname] cnfTopFlowsCacheTimeout.0 unsigned milliseconds

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	ip flow-top-talkers	(Required) Enters NetFlow Top Talkers configuration mode.
	<pre>Example: Router(config) # ip flow-top-talkers</pre>	
Step 4	top number	(Required) Specifies the maximum number of top talkers that will be retrieved by a NetFlow top talkers query.
	<pre>Example: Router(config-flow-top-talkers)# top 50</pre>	• The range for the <i>number</i> argument is from 1 to 200 entries.
Step 5	sort-by [bytes packets]	(Required) Specifies the sort criterion for the top talkers.
	<pre>Example: Router(config-flow-top-talkers)# sort-by packets</pre>	The top talkers can be sorted either by the total number of packets of each top talker or the total number of bytes of each top talker.

	Command or Action	Purpose			
Step 6	cache-timeout milliseconds	(Optional) Specifies the amount of time that the list of top talkers is retained.			
	<pre>Example: Router(config-flow-top-talkers)# cache-timeout 30000</pre>	• Reentering the top , sort-by , or cache-timeout command resets the timeout period, and the list of top talkers is recalculated the next time they are requested.			
		• The list of top talkers is lost when the timeout period expires. You should configure a timeout period for at least as long as it takes the network management system (NMS) to retrieve all the required NetFlow top talkers.			
		• If this timeout value is too large, the list of top talkers might not be updated quickly enough to display the latest top talkers. If a request to display the top talkers is made more than once during the timeout period, the same results will be displayed for each request. To ensure that the latest information is displayed while conserving CPU time, configure a large value for the timeout period and change the parameters of the cache-timeout, top, or sort-by command when a new list of top talkers is required.			
		• The range for the <i>number</i> argument is from 1 to 3,600,000 milliseconds. The default is 5000 (5 seconds).			
Step 7	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.			
	<pre>Example: Router(config-flow-top-talkers)# end</pre>				

DETAILED STEPS: SNMP Commands

	Command or Action	Purpose		
Step 1	<pre>snmpset -c private -m all -v2c [ip-address hostname] cnfTopFlowsTopN.0 unsigned number</pre>	(Required) Specifies the maximum number of top talkers that will be retrieved by a NetFlow top talkers query.		
	Example: workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfTopFlowsTopN.0 unsigned 50	• The value for the <i>number</i> argument in cnfTopFlowsTopN.0 <i>number</i> is the maximum number of top talkers that will be retrieved by a NetFlow top talkers query.		
		• The range for the <i>number</i> argument is from 1 to 200 entries.		

Step 2

snmpset -c private -m all -v2c [ip-address |
hostname] cnfTopFlowsSortBy.0 integer [1 | 2 |
3]

Example:

workstation% snmpset -c private -m all -v2c
10.4.9.62 cnfTopFlowsSortBy.0 integer 2

(Required) Specifies the sort criteria for the top talkers.

- Values for sort-option in cnfTopFlowsSortBy.0 [1 | 2 | 3] are
 - 1—No sorting will be performed and that the NetFlow MIB and Top Talkers feature will be disabled.
 - 2—Sorting will be performed by the total number of packets of each top talker.
 - 3—Sorting will be performed by the total number of bytes of each top talker.

Step 3

snmpset -c private -m all -v2c [ip-address |
hostname] cnfTopFlowsCacheTimeout.0 unsigned
milliseconds

Example:

workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfTopFlowsCacheTimeout.0 unsigned 30000

(Optional) Specifies the amount of time that the list of top talkers is retained.

- Reentering the **top**, **sort-by**, or **cache-timeout** command resets the timeout period, and the list of top talkers is recalculated the next time they are requested.
- The list of top talkers will be lost when the timeout period expires. You should configure a timeout period for at least as long as it takes the network management system (NMS) to retrieve all the required NetFlow top talkers.
- If this timeout value is too large, the list of top talkers might not be updated quickly enough to display the latest top talkers. If a request to display the top talkers is made more than once during the timeout period, the same results will be displayed for each request. To ensure that the latest information is displayed while conserving CPU time, configure a large value for the timeout period and change the parameters of the cache-timeout, top, or sort-by command when a new list of top talkers is required.
- The range for the *number* argument is from 1 to 3,600,000 milliseconds. The default is 5000 (5 seconds).

Configuring NetFlow Top Talkers Match Criteria

You can limit the traffic that is displayed by the NetFlow Top Talkers feature by configuring match criteria. The match criteria are applied to data in the main cache. The data in the main cache that meets the match criteria is displayed when you enter the **show ip flow top-talkers** command. To limit the traffic that is displayed by the NetFlow MIB and Top Talkers feature, perform the steps in this optional task.

Before configuring NetFlow MIB and Top Talkers match criteria, you should understand the following:

- NetFlow Top Talkers Match Criteria Specified by CLI Commands, page 17
- NetFlow Top Talkers Match Criteria Specified by SNMP Commands, page 17

NetFlow Top Talkers Match Criteria Specified by CLI Commands

You can use the **match** CLI command to specify match criteria to restrict the display of top talkers for the NetFlow MIB and Top Talkers feature. If you do not provide matching criteria, all top talkers are displayed.

When configuring a matching source, destination or nexthop address, both the address and a mask must be configured. The configuration will remain unchanged until both have been specified.

cnfTopFlowsMatchSampler matches flows from a named flow sampler. **cnfTopFlowsMatchClass** matches flows from a named class map.

When you are configuring the Top Talkers feature to match bytes and packets, the values that are matched are the total number of bytes and packets in the flow so far. For example, it is possible to match flows containing a specific number of packets, or flows with more or less than a set number of bytes.

For more information on using the match command, see the Cisco IOS NetFlow Command Reference.

NetFlow Top Talkers Match Criteria Specified by SNMP Commands

If you are using SNMP commands to configure NetFlow Top Talkers, see Table 1 for router CLI commands and equivalent SNMP commands.

Some of the SNMP match criteria options, such as the **cnfTopFlowsMatchSrcAddress** option, require that you enter more than one SNMP commands on the same line. For example, **snmpset -c private -m all -v2c 10.4.9.62 cnfTopFlowsMatchSrcAddressType.0 integer 1 cnfTopFlowsMatchSrcAddress.0 decimal 172.16.10.0 cnfTopFlowsMatchSrcAddressMask.0 unsigned 24.**

Table 1 Router CLI Commands and Equivalent SNMP Commands

Router CLI Command	SNMP Command
match source address [ip-address] [mask /nn]	cnfTopFlowsMatchSrcAddress decimal ip-address
	cnfTopFlowsMatchSrcAddressType integer type ¹
	${\bf cnfTopFlowsMatchSrcAddressMask\ unsigned} \\ {\it mask}$
match destination address [ip-address] [mask /nn]	cnfTopFlowsMatchDstAddress decimal ip-address
	cnfTopFlowsMatchDstAddressType integer type ¹
	cnfTopFlowsMatchDstAddressMask unsigned mask

Table 1 Router CLI Commands and Equivalent SNMP Commands (continued)

Router CLI Command	SNMP Command
match nexthop address [ip-address] [mask /nn]	cnfTopFlowsMatchNhAddress decimal ip-address
	cnfTopFlowsMatchNhAddressType integer type ¹
	cnfTopFlowsMatchNhAddressMask unsigned mask
match source port min port	cnfTopFlowsMatchSrcPortLo integer port
match source port max port	cnfTopFlowsMatchSrcPortHi integer port
match destination port min port	cnfTopFlowsMatchDstPortLo integer port
match destination port max port	cnfTopFlowsMatchDstPortHi integer port
match source as as-number	cnfTopFlowsMatchSrcAS integer as-number
match destination as as-number	cnfTopFlowsMatchDstAS integer as-number
match input-interface interface	cnfTopFlowsMatchInputIf integer interface
match output-interface interface	cnfTopFlowsMatchOutputIf integer interface
match tos [tos-value dscp dscp-value precedence precedence-value]	cnfTopFlowsMatchTOSByte integer tos-value ²
match protocol [protocol-number tcp udp]	cnfTopFlowsMatchProtocol integer protocol-number
match flow-sampler flow-sampler-name	cnfTopFlowsMatchSampler string flow-sampler-name
match class-map class	cnfTopFlowsMatchClass string class
match packet-range min minimum-range	cnfTopFlowsMatchMinPackets unsigned minimum-range
match packet-range max maximum-range	cnfTopFlowsMatchMaxPackets unsigned maximum-range
match byte-range min minimum-range	cnfTopFlowsMatchMinBytes unsigned minimum-range
match byte-range max maximum-range	cnfTopFlowsMatchMaxPackets unsigned maximum-range

^{1.} The only IP version type that is currently supported is IPv4 (type 1).

Configuring Source IP Address Top Talkers Match Criteria

Perform the steps in this optional task using either the router CLI commands or the SNMP commands to add source IP address match criteria to the Top Talkers configuration.

For information on configuring other Top Talkers match criteria see the following resources:

- Cisco IOS NetFlow Command Reference.
- CISCO-NETFLOW-MIB at the following URL: http://www.cisco.com/go/mibs/. Select SNMP Object Locator. Then select View & Download MIBs.

^{2.} tos-value is 6 bits for DSCP, 3 bits for precedence, and 8 bits (one byte) for ToS.

Prerequisites

You must configure NetFlow Top Talkers before you perform this task.

SUMMARY STEPS

Router CLI Commands

- 1. enable
- 2. configure terminal
- 3. ip flow-top-talkers
- **4. match source address** { *ip-address/nn* | *ip-address mask*}
- 5. end

SNMP Commands

1. snmpset -c private -m all -v2c [ip-address | hostname] cnfTopFlowsMatchSrcAddressType.0 integer 1 cnfTopFlowsMatchSrcAddress.0 decimal ip-address cnfTopFlowsMatchSrcAddressMask.0 unsigned mask

DETAILED STEPS: Router CLI Commands

	Command or Action	Purpose
Step 1	enable	(Required) Enables privileged EXEC mode.
		• Enter your password if prompted.
	<pre>Example: Router> enable</pre>	
Step 2	configure terminal	(Required) Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	ip flow-top-talkers	(Required) Enters NetFlow Top Talkers configuration mode.
	<pre>Example: Router(config)# ip flow-top-talkers</pre>	

	Command or Action	Purpose				
Step 4	<pre>match source address {ip-address/nn ip-address mask}</pre>	(Required) Specifies a match criterion. • The source address keyword specifies that the match				
	Example: Router(config-flow-top-talkers)# match source address 172.16.10.0/24	 criterion is based on the source IP address. The <i>ip-address</i> argument is the IP address of the source, destination, or next-hop address to be matched. The <i>mask</i> argument is the address mask, in dotted decimal format. The <i>lnn</i> argument is the address mask as entered in CIDR format. The match source address 172.16.10.0/24 is equivalent to the match source 				
		address 172.16.10.0 255.255.255.0 command. Note You must configure at least one of the possible match criteria before matching can be used to limit the traffic that is displayed by the NetFlow Top Talkers feature. Additional match criteria are optional.				
		Note For a full list of the matching criteria that you can select, refer to the "NetFlow Top Talkers Match Criteria Specified by CLI Commands" section on page 17.				
Step 5	end	(Required) Exits the current configuration mode and returns to privileged EXEC mode.				
	<pre>Example: Router(config-flow-top-talkers)# end</pre>					

DETAILED STEPS: SNMP Commands

Command or Action Purpose Step 1 snmpset -c private -m all -v2c [ip-address (Required) Specifies a match criterion. hostname] cnfTopFlowsMatchSrcAddressType.0 The IP address type of 1 in the integer 1 cnfTopFlowsMatchSrcAddress.0 decimal cnfTopFlowsMatchSrcAddressType.0 integer 1 ip-address cnfTopFlowsMatchSrcAddressMask.0 unsigned mask command specifies an IP version 4 (IPv4) address for the IP address type. IPv4 is currently the only IP version that is supported. Example: workstation% snmpset -c private -m all -v2c The *ip-address* argument in 10.4.9.62 cnfTopFlowsMatchSrcAddressType.0 cnfTopFlowsMatchSrcAddress.0 decimal ip-address integer 1 cnfTopFlowsMatchSrcAddress.0 decimal is the IPv4 source IP address to match in the traffic that 172.16.10.0 cnfTopFlowsMatchSrcAddressMask.0 is being analyzed. unsigned 24 The *mask* argument in cnfTopFlowsMatchSrcAddressMask.0 unsigned mask is the number of bits in the mask for the IPv4 source IP address to match in the traffic that is being analyzed. Note You must configure at least one of the possible match criteria before matching can be used to limit the traffic that is displayed by the Top talkers feature. Additional match criteria are optional. Note To remove the cnfTopFlowsMatchSrcAddress match criterion from the configuration, specify an IP address type of 0 (unknown) with the cnfTopFlowsMatchSrcAddressType.0 integer 0 command. Note For a list of router CLI commands and their corresponding SNMP commands, see Table 1.

Verifying the NetFlow Top Talkers Configuration

To verify the NetFlow Top Talkers configuration, perform the steps in this optional task using either the router CLI command or the SNMP commands.

SUMMARY STEPS

Router CLI Commands

1. show ip flow top-talkers

SNMP Command

- 1. snmpset -c private -m all -v2c [ip-address | hostname] cnfTopFlowsGenerate.0 integer 1
- 2. snmpwalk -c public -m all -v2c [ip-address | hostname] cnfTopFlowsReportAvailable
- 3. snmpwalk -c public -m all -v2c [ip-address | hostname] cnfTopFlowsTable

DETAILED STEPS: Router CLI Commands

Step 1 show ip flow top-talkers

Use this command to verify that the NetFlow MIB and Top Talkers feature is operational. For example:

Router# show ip flow top-talkers

SrcIf	SrcIPaddress	DstIf	DstIPaddress	Pr	SrcP	DstP	Bytes
Et3/0	10.1.1.3	Local	10.1.1.2	01	0000	0000	4800
Et3/0	10.1.1.4	Local	10.1.1.2	01	0000	0000	4800
Et3/0	10.1.1.5	Local	10.1.1.2	01	0000	0000	800
3 of 10 top t	alkers shown. 3	flows processe	d.				

In this example, even though a maximum of ten top talkers is configured by the **top** command, only three top talkers were transmitting data in the network. Therefore, three top talkers are shown, and the "3 flows processed" message is displayed in the output. If you expect more top talkers to be displayed than are being shown, this condition may possibly be the result of matching criteria, specified by the **match** command, that are overly restrictive.

DETAILED STEPS: SNMP Commands

Step 1 snmpset -c private -m all -v2c [ip-address | hostname] cnfTopFlowsGenerate.0 integer 1

Use this command to initiate a generation of the top talkers statistics:

```
workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfTopFlowsGenerate.0 integer 1
CISCO-NETFLOW-MIB::cnfTopFlowsGenerate.0 = INTEGER: true(1)
```

Step 2 snmpget -c public -m all -v2c [ip-address | hostname] cnfTopFlowsReportAvailable

Use this command to verify that the top talkers statistics are available:

```
workstation% snmpwalk -c public -m all -v2c 10.4.9.62 cnfTopFlowsReportAvailable

CISCO-NETFLOW-MIB::cnfTopFlowsReportAvailable.0 = INTEGER: true(1)
```

Step 3 snmpwalk -c public -m all -v2c [ip-address | hostname] cnfTopFlowsTable

Use this command to display the NetFlow top talkers:

```
workstation% snmpwalk -c public -m all -v2c 10.4.9.62 cnfTopFlowsTable
CISCO-NETFLOW-MIB::cnfTopFlowsSrcAddressType.1 = INTEGER: ipv4(1)
CISCO-NETFLOW-MIB::cnfTopFlowsSrcAddress.1 = Hex-STRING: 0A 04 09 08
CISCO-NETFLOW-MIB::cnfTopFlowsSrcAddressMask.1 = Gauge32: 0
CISCO-NETFLOW-MIB::cnfTopFlowsDstAddressType.1 = INTEGER: ipv4(1)
CISCO-NETFLOW-MIB::cnfTopFlowsDstAddress.1 = Hex-STRING: 0A 04 09 A7
CISCO-NETFLOW-MIB::cnfTopFlowsDstAddressMask.1 = Gauge32: 0
CISCO-NETFLOW-MIB::cnfTopFlowsNhAddressType.1 = INTEGER: ipv4(1)
CISCO-NETFLOW-MIB::cnfTopFlowsNhAddress.1 = Hex-STRING: 00 00 00
CISCO-NETFLOW-MIB::cnfTopFlowsSrcPort.1 = Gauge32: 32773
CISCO-NETFLOW-MIB::cnfTopFlowsDstPort.1 = Gauge32: 161
CISCO-NETFLOW-MIB::cnfTopFlowsSrcAS.1 = Gauge32: 0
CISCO-NETFLOW-MIB::cnfTopFlowsDstAS.1 = Gauge32: 0
CISCO-NETFLOW-MIB::cnfTopFlowsInputIfIndex.1 = INTEGER: 1
CISCO-NETFLOW-MIB::cnfTopFlowsOutputIfIndex.1 = INTEGER: 0
CISCO-NETFLOW-MIB::cnfTopFlowsFirstSwitched.1 = Timeticks: (12073160) 1 day, 9:32:11.60
CISCO-NETFLOW-MIB::cnfTopFlowsLastSwitched.1 = Timeticks: (12073160) 1 day, 9:32:11.60
CISCO-NETFLOW-MIB::cnfTopFlowsTOS.1 = Gauge32: 0
CISCO-NETFLOW-MIB::cnfTopFlowsProtocol.1 = Gauge32: 17
```

```
CISCO-NETFLOW-MIB::cnfTopFlowsTCPFlags.1 = Gauge32: 16
CISCO-NETFLOW-MIB::cnfTopFlowsSamplerID.1 = Gauge32: 0
CISCO-NETFLOW-MIB::cnfTopFlowsClassID.1 = Gauge32: 0
CISCO-NETFLOW-MIB::cnfTopFlowsFlags.1 = Gauge32: 0
CISCO-NETFLOW-MIB::cnfTopFlowsBytes.1 = Gauge32: 75
CISCO-NETFLOW-MIB::cnfTopFlowsPackets.1 = Gauge32: 1
```


You must convert the source and destination IP addresses from hexadecimal to dotted decimal format used in the display output before you can correlate them to source and destination hosts on your network. For example, in the display output above: 0A 04 09 02 = 10.4.9.2 and 0A 04 09 AF = 10.4.9.175.

Configuration Examples for NetFlow Top Talkers

This section provides the following configuration examples:

- Configuring NetFlow Top Talkers Using SNMP Commands: Example, page 23
- Configuring NetFlow Top Talkers Match Criteria Using SNMP Commands: Example, page 24

Configuring NetFlow Top Talkers Using SNMP Commands: Example

The following output from the network management workstation shows the command and the response for enabling NetFlow on interface GigabitEthernet6/2 (ifindex number 60):

```
workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfCINetflowEnable.60 integer 1
CISCO-NETFLOW-MIB::cnfCINetflowEnable.60 = INTEGER: interfaceDirIngress(1)
```

The following output from the network management workstation shows the command and the response for specifying 5 as the maximum number of top talkers that will be retrieved by a NetFlow top talkers query:

```
workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfTopFlowsTopN.0 unsigned 5
CISCO-NETFLOW-MIB::cnfTopFlowsTopN.0 = Gauge32: 5
```

The following output from the network management workstation shows the command and the response for specifying the sort criteria for the top talkers:

```
workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfTopFlowsSortBy.0 integer 2
CISCO-NETFLOW-MIB::cnfTopFlowsSortBy.0 = INTEGER: byPackets(2)
```

The following output from the network management workstation shows the command and the response for specifying the amount of time that the list of top talkers is retained:

```
CISCO-NETFLOW-MIB::cnfTopFlowsCacheTimeout.0 = Gauge32: 2000 milliseconds
```

Configuring NetFlow Top Talkers Match Criteria Using SNMP Commands: Example

The following output from the network management workstation shows the **snmpset** command and the response for specifying the following NetFlow Top Talkers match criteria:

- Source IP address-172.16.23.0
- Source IP address mask–255.255.255.0 (/24)
- IP address type–IPv4

workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfTopFlowsMatchSrcAddress.0 decimal 172.16.23.0 cnfTopFlowsMatchSrcAddressMask.0 unsigned 24 cnfTopFlowsMatchSrcAddressType.0 integer 1

```
CISCO-NETFLOW-MIB::cnfTopFlowsMatchSrcAddress.0 = Hex-STRING: AC 10 17 00 CISCO-NETFLOW-MIB::cnfTopFlowsMatchSrcAddressMask.0 = Gauge32: 24 CISCO-NETFLOW-MIB::cnfTopFlowsMatchSrcAddressType.0 = INTEGER: ipv4(1)
```

The following output from the network management workstation shows the snmpset command and the response for specifying the class-map my-class-map as aNetFlow Top Talkers match criterion:

```
workstation% snmpset -c private -m all -v2c 10.4.9.62 cnfTopFlowsMatchClass.0 s my-class-map
```

```
CISCO-NETFLOW-MIB::cnfTopFlowsMatchClass.0 = STRING: my-class-map.
```

Additional References

The following sections provide references related to the NetFlow MIB and Top Talkers feature.

Related Documents

Related Topic	Document Title
Overview of Cisco IOS NetFlow	"Cisco IOS NetFlow Overview"
List of the features documented in the Cisco IOS NetFlow Configuration Guide configuration guide	"Cisco IOS NetFlow Features Roadmap"
The minimum information about and tasks required for configuring NetFlow and NetFlow Data Export	"Getting Started with Configuring NetFlow and NetFlow Data Export"
Tasks for configuring NetFlow to capture and export network traffic data	"Configuring NetFlow and NetFlow Data Export"
Tasks for configuring Configuring MPLS Aware NetFlow	Configuring MPLS Aware NetFlow
Tasks for configuring MPLS egress NetFlow accounting	Configuring MPLS Egress NetFlow Accounting and Analysis
Tasks for configuring NetFlow input filters	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring Random Sampled NetFlow	"Using NetFlow Filtering or Sampling to Select the Network Traffic to Track"
Tasks for configuring NetFlow aggregation caches	"Configuring NetFlow Aggregation Caches"
Tasks for configuring NetFlow BGP next hop support	"Configuring NetFlow BGP Next Hop Support for Accounting and Analysis"
Tasks for configuring NetFlow multicast support	"Configuring NetFlow Multicast Accounting"
Tasks for detecting and analyzing network threats with NetFlow	Detecting and Analyzing Network Threats With NetFlow
Tasks for configuring NetFlow Reliable Export With SCTP	NetFlow Reliable Export With SCTP
Tasks for configuring NetFlow Layer 2 and Security Monitoring Exports	"NetFlow Layer 2 and Security Monitoring Exports"
Tasks for configuring the SNMP NetFlow MIB	"Configuring SNMP and using the NetFlow MIB to Monitor NetFlow Data"
Information for installing, starting, and configuring the CNS NetFlow Collection Engine	"Cisco CNS NetFlow Collection Engine Documentation"

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL (requires CCO login account):
	http://www.cisco.com/go/mibs

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content,	http://www.cisco.com/techsupport
including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users	
can log in from this page to access even more content.	

Feature Information for Configuring NetFlow Top Talkers using the Cisco IOS CLI or SNMP Commands

Table 2 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Release 12.2(1) or 12.0(3)S or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For details on when support for a specific command was introduced, see the command reference documentation.

For information on a feature in this technology that is not documented here, see the "Cisco IOS NetFlow Features Roadmap" module.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click **Cancel** at the login dialog box and follow the instructions that appear.

Table 2 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 2 Feature Information for Configuring NetFlow Top Talkers using the Cisco IOS CLI or SNMP Commands

Feature Name	Releases	Feature Configuration Information
NetFlow MIB	12.3(7)T, 12.2(25)S 12.2(27)SBC	The NetFlow MIB feature provides MIB objects to allow users to monitor NetFlow cache information, the current NetFlow configuration, and statistics.
		The following command was introduced by this feature: ip flow-cache timeout .
NetFlow MIB and Top Talkers	12.3(11)T, 12.2(25)S 12.2(27)SBC 12.2(33)SXH	The NetFlow MIB feature that was originally released in Cisco IOS Release12.3(7)T was modified in Cisco IOS Release 12.3(11)T to support the new NetFlow Top Talkers feature. The modifications to the NetFlow MIB and the new Top Talkers feature were released under the feature name NetFlow MIB and Top Talkers.
		The NetFlow MIB and Top Talkers feature uses NetFlow functionality to obtain information regarding heaviest traffic patterns and most-used applications (top talkers) in the network. The NetFlow MIB component of the NetFlow MIB and Top Talkers feature enables you to configure top talkers and view the top talker statistics using SNMP.
		The following sections provide information about this feature:
		• Information About Configuring NetFlow Top Talkers, page 2
		How to Configure NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands, page 4
		The following commands were introduced by this feature: cache-timeout, ip flow-top-talkers, match, show ip flow top-talkers, sort-by, and top.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0804R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Configuring NetFlow Top Talkers using Cisco IOS CLI Commands or SNMP Commands
Feature Information for Configuring NetFlow Top Talkers using the Cisco IOS CLI or SNMP Commands