Tag - protocol

The Basics of BGP Route Reflection

Configuring Border Gateway Protocol (BGP) can be quite onerous, particularly with large numbers of peering sessions that must be configured manually. In fact, in a large network, the full-mesh requirement for IBGP can be a provisioning nightmare.

BGP’s answer to the IBGP pairing configuration nightmare that is the full mesh is called route reflection. Route reflection allows sharing of routing information among a group of routers without having to send the exact same information to each of them individually. It’s sort of like giving information to one person and having them distribute it to all their peers.

IBGP comes with a significant restriction: IBGP peers should not re-advertise IBGP-learned routes to other IBGP speakers, which is why they all need to be fully meshed. If you can’t re-advertise IBGP routes, you must be directly connected to the originator of the route, hence the full mesh requirement. Remember, IBGP has no dedicated loop prevention mechanism, and this is why you need route reflectors for large networks.

The concept of route reflection allows you to designate one or more of your routers as route reflectors. BGP relaxes the re-advertising restriction on these route reflectors, allowing them to accept and propagate IBGP routes to their clients.

 

A-16-Router-Network

 

Because of the IBGP full-mesh requirement, this topology would require 15 IBGP peering sessions per router, or 120 distinct IBGP sessions within the network. However, if you designate router 4 as a route reflector, you can start to minimize this requirement. For example, look at what happens in with the routers directly connected to router 4.

 

Router-4-sub-network

 

In this part of the topology, router 4 has three directly-connected routers. If just this part of the topology is running IBGP, you have to configure a full mesh between the 4 routers. However, if you designate router 4 as a route reflector, BGP only requires that every route reflector client have an IBGP connection to the route reflector (not to each other).

 

Route-Reflector

 

With the new configuration, the IBGP routes from routers 1, 2, and 3 are sent to the route reflector. Router 4, acting as the route reflector, re-advertises these routes to all of its clients.

In this way, router 1 and router 2 are connected via IBGP, through their shared route reflector, router 4. This group of routers is called a cluster, and each cluster is uniquely identified by its cluster ID (a 32-bit number similar to an IP address).

Looking back at the original 16-router network, if you make similar route reflectors with routers 8, 12, and 16, you can create four route reflectors and reduce the number of IBGP sessions.

Router-4-sub-network

 

The 16-router fully meshed route reflector network

However, all 16 routers are still in the same AS, which means that IBGP has to fully connect all 16 routers. How do you do this?

Ultimately, you must have connectivity somewhere. That connectivity occurs at the route reflector level. The route reflectors must be fully meshed, meaning that you must have IBGP peering sessions between each of the four route reflectors.

Essentially, you have drastically reduced the number of IBGP sessions in your network. Where you previously needed 120 sessions to fully mesh your network, you now need only three sessions from each route reflector to its clients and an additional six sessions to fully mesh the route reflectors (for a total of 18 IBGP sessions).

BGP Adjacency States

BGP Adjacency States

  1. Idle State
  2. Connect State
  3. Active State
  4. OpenSent State
  5. OpenConfirm State
  6. Established State

1. Idle State:

Idle is the initial state of a BGP connection. The BGP speaker is waiting for a start event, generally either the establishment of a TCP connection or the re-establishment of a previous connection. Once the connection is established, BGP moves to the next state.

Attributes

  • Refuse all incoming BGP connections
  • Start the initialization of event triggers
  • Initiates a TCP connection with its configured BGP peer
  • Listens for a TCP connection from its peer
  • Changes its state to Connect

If an error occurs at any state of the FSM process, the BGP session is terminated immediately and returned to the Idle state. Some of the reasons why a router does not progress from the Idle state are:

  • TCP port 179 is not open
  • A random TCP port over 1023 is not open
  • Peer address configured incorrectly on either router
  • AS number configured incorrectly on either router

2. Connect State:

Connect is the next state of a BGP connection. If the TCP connection completes, BGP will move to the OpenSent stage if the connection does not complete, BGP goes to Active.

Attributes

  • Waits for successful TCP negotiation with peer
  • BGP does not spend much time in this state if the TCP session has been successfully established
  • Sends Open message to peer and changes state to OpenSent

If an error occurs, BGP moves to the Active state. Some reasons for the error are:

  • TCP port 179 is not open
  • A random TCP port over 1023 is not open
  • Peer address configured incorrectly on either router
  • AS number configured incorrectly on either router

3. Active State:

Active indicates that the BGP speaker is continuing to create a peer relationship with the remote router. If this is successful, the BGP state goes to OpenSent. You’ll occasionally see a BGP connection flap between Active and Connect. This indicates an issue with the physical cable itself, or with the configuration.

Attributes

  • If the router was unable to establish a successful TCP session, then it ends up in the Active state
  • BGP FSM tries to restart another TCP session with the peer and, if successful, then it sends an Open message to the peer
  • If it is unsuccessful again, the FSM is reset to the Idle state

Repeated failures may result in a router cycling between the Idle and Active states. Some of the reasons for this include:

  • TCP port 179 is not open
  • A random TCP port over 1023 is not open
  • BGP configuration error
  • Network congestion
  • Flapping network interface

4. OpenSent State:

OpenSent indicates that the BGP speaker has received an Open message from the peer. BGP will determine whether the peer is in the same AS (iBGP) or a different AS (eBGP) in this state.

Attributes

  • BGP FSM listens for an Open message from its peer
  • Once the message has been received, the router checks the validity of the Open message
  • If there is an error it is because one of the fields in the Open message doesn’t match between the peers, e.g., BGP version mismatch, MD5 password mismatch, the peering router expects a different My AS, etc. The router then sends a Notification message to the peer indicating why the error occurred
  • If there is no error, a Keepalive message is sent, various timers are set and the state is changed to OpenConfirm

5. OpenConfirm State:

In OpenConfirm state, the BGP speaker is waiting for a keepalive message. If one is received, the state moves to Established, and the neighbor relationship is complete. It is in the Established state that update packets are actually exchanged.

Attributes

  • The peer is listening for a Keepalive message from its peer
  • If a Keepalive message is received and no timer has expired before reception of the Keepalive, BGP transitions to the Established state
  • If a timer expires before a Keepalive message is received, or if an error condition occurs, the router transitions back to the Idle state

6. Established State:

In Established state, if one of keepalive message is received, the state moves to Established, and the neighbor relationship is complete. It is in the Established state that update packets are actually exchanged.

Attributes

  • In this state, the peers send update messages to exchange information about each route being advertised to the BGP peer
  • If there is any error in the update message then a Notification message is sent to the peer, and BGP transitions back to the idle state
  • If a timer expires before a Keepalive message is received, or if an error condition occurs, the router transitions back to the Idle state

BGP-Adjacency-States

Basic CCNA Job Interview Questions

1: What is unicast and how does it work?

Unicast is a one-to-one transmission method. A single frame is sent from the
source to a destination on a network. When this frame is received by the switch,
the frame is sent on to the network, and the network passes the frame to its
destination from the source to a specific destination on a network.

ccna interview questions

2: What is multicast and how does it work?

** Multicast is a one-to-many transmission method. A single frame is sent from
the source to multiple destinations on a network using a multicast address. When
this frame is received by the switch, the frame is sent on to the network and the
network passes the frame to its intended destination group.

3:  What is broadcast and how does it work?

** Broadcast is a one-to-all transmission method. A single frame is sent from the
source to a destination on a network using a multicast address. When this frame
is received by the switch, the frame is sent on to the network. The network
passes the frame to all nodes in the destination network from the source to an
unknown destination on a network using a broadcast address. When the switch
receives this frame, the frame is sent on to all the networks, and the networks
pass the frame on to all the nodes. If it reaches a router, the broadcast frame is
dropped.

4: What is fragmentation?

** Fragmentation in a network is the breaking down of a data packet into smaller
pieces to accommodate the maximum transmission unit (MTU) of the network.

5: What is MTU? What’s the MTU for traditional Ethernet?

** MTU is the acronym for maximum transmission unit and is the largest frame
size that can be transmitted over a network. Messages longer than the MTU
must be divided into smaller frames. The network layer (Layer 3) protocol
determines the MTU from the data link layer (Layer 2) protocol and fragments the
messages into the appropriate frame size, making the frames available to the
lower layer for transmission without further fragmentation. The MTU for Ethernet
is 1518 bytes.

6: What is a MAC address?

** A MAC address is the physical address of a network device and is 48 bits (6
bytes) long. MAC addresses are also known as physical addresses or hardware
addresses.

7:  What is the difference between a runt and a giant, specific to traditional
Ethernet?

** In Ethernet a runt is a frame that is less than 64 bytes in length, and a giant is
a frame that is greater than 1518 bytes in length. Giants are frames that are
greater than the MTU used, which might not always be 1518 bytes.

8: What is the difference between store-and-forward and cut-through
switching?

** Cut-through switching examines just the frame header, determining the output
switch port through which the frame will be forwarded. Store-and-forward
examines the entire frame, header and data payload, for errors. If the frame is
error free, it is forwarded out its destination switch port interface. If the frame has
errors, the switch drops the frame from its buffers. This is also known as
discarding the frame to the bit bucket.

9: What is the difference between Layer 2 switching and Layer 3 switching?

* * Layer 2 switches make their forwarding decisions based on the Layer 2 (data
link) address, such as the MAC address. Layer 3 switches make their forwarding
decisions based on the Layer 3 (network) address.

10: What is the difference between Layer 3 switching and routing?

** The difference between Layer 3 switching and routing is that Layer 3 switches
have hardware to pass data traffic as fast as Layer 2 switches. However, Layer 3
switches make decisions regarding how to transmit traffic at Layer 3 in the same
way as a router. A Layer 3 switch cannot use WAN circuits or use routing
protocols; a router is still required for these functions.

Back

Copyright ©2010 - 2021 Ciscoforall.com | Privacy Policy | Terms & Conditions

Porno Gratuit Porno Français Adulte XXX Brazzers Porn College Girls Film érotique Hard Porn Inceste Famille Porno Japonais Asiatique Jeunes Filles Porno Latin Brown Femmes Porn Mobile Porn Russe Porn Stars Porno Arabe Turc Porno caché Porno de qualité HD Porno Gratuit Porno Mature de Milf Porno Noir Regarder Porn Relations Lesbiennes Secrétaire de Bureau Porn Sexe en Groupe Sexe Gay Sexe Oral Vidéo Amateur Vidéo Anal